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Abstract

Self-organizing maps (SOMs) are popular tools for grouping and visualizing data in
many areas of science. This paper describes recent changes in package kohonen, imple-
menting several different forms of SOMs. These changes are primarily focused on making
the package more useable for large data sets. Memory consumption has decreased dra-
matically, amongst others, by replacing the old interface to the underlying compiled code
by a new one relying on Rcpp. The batch SOM algorithm for training has been added in
both sequential and parallel forms. A final important extension of the package’s repertoire
is the possibility to define and use data-dependent distance functions, extremely useful in
cases where standard distances like the Euclidean distance are not appropriate. Several
examples of possible applications are presented.
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1. Introduction

The kohonen package (Wehrens and Kruisselbrink 2018) for R (R Core Team 2018), available
from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/

package=kohonen, was published ten years ago (Wehrens and Buydens 2007) as a tool for
self-organizing maps (Kohonen 1995), providing simple yet effective visualization methods.
A particular characteristic of the package was the possibility to provide several data layers
that would contribute to the overall distances on which the mapping would be based. Since
then, the package has been applied in different fields like environmental sciences (Vaclavik,
Lautenbach, Kuemmerle, and Seppelt 2013), transcriptomics (Chitwood, Maloof, and Sinha
2013), and biomedical sciences (Wiwie, Baumbach, and Rottger 2015), to mention but a few.

Self-organizing maps (SOMs) aim to project objects onto a two-dimensional plane in such
a way that similar objects are close together and dissimilar objects are far away from each
other. Obviously, such a visualization is extremely useful for data sets with large numbers
of objects, but also in cases where the number of variables is large – everything is brought
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back to similarities between objects. What distinguishes SOMs from approaches like principal
component analysis (PCA) or principal coordinate analysis (PCoA) is the discrete nature of
the mapping: Objects are mapped to specific positions in the 2D plane, called units. Each unit
is associated with an object called a codebook vector, usually corresponding to the average
of all objects mapped to that unit. The codebook vector can be seen as a “typical” object
for that area of the map. Mapping data to a trained SOM is nothing more than calculating
the distance of the new data points to the codebook vectors, and assigning each object to the
unit with the most similar codebook vector (the best matching, or “winning”, unit).

For training SOMs several different algorithms are used: The standard ones are the online
and the batch algorithms (Kohonen 1995). In both cases, training objects are compared to
the current set of codebook vectors. The codebook vector of the winning unit, as well as
units within a certain radius of the winning unit, are changed to become more similar to the
new object mapping to it. During training, the radius slowly decreases; in the end of the
training only the winning unit is updated. The difference between the online and batch SOM
algorithms is that the update of the winning unit(s) in the online algorithm is done after each
individual object, whereas the batch algorithm does not change the codebook vectors until
the whole data set has been presented. Then, the cumulative change based on all objects in
the training set is applied in one go.

Several R packages implement more or less elaborate versions of the SOM: class (Venables and
Ripley 2002), the basis of the original kohonen package, implements both the online and batch
algorithms, using the .C interface to compiled code. The som package (Yan 2016) provides
the basic online version of the SOM, with training done in C++ using the .Call interface.
Package SOMbrero (Olteanu and Villa-Vialaneix 2015) provides methods for handling nu-
merical data, contingency tables, and dissimilarity matrices. Different scaling methods for
data of particular types are included. All functions are pure R – no compiled code is used,
which leads to a relatively slow training phase. The package supports a shiny (Chang, Cheng,
Allaire, Xie, and McPherson 2018) interface for dynamic visualization of results. The RSNNS

package (Bergmeir and Benítez 2012) is an R wrapper to the SNNS toolbox written in C++,
including SOMs as one of many types of neural networks. Finally, a very recent publication
introduced the somoclu package (Wittek, Gao, Lim, and Zhao 2017), providing a general
toolbox for training SOMs with support for cluster and GPU computations, and interfaces to
Python (Van Rossum et al. 2011), MATLAB (The MathWorks Inc. 2017) and R.

The kohonen package (Wehrens and Buydens 2007) provides extensive visualization possibil-
ities1 as well as fast training and mapping using compiled code. However, several limitations
were becoming apparent (see, e.g., Boyle, Araya et al. 2014). Memory management was not
very efficient, unnecessarily declaring potentially large memory chunks; the lack of paralleliza-
tion support meant that even in simple desktop and laptop computers computing power was
not fully used; and finally, fixed distance functions were implemented and no others could
be added by the user without explicitly recompiling the package. In a major overhaul, these
issues have been addressed, leading to version 3.0. Finally, the package has been extended
with the batch algorithm, including support for parallel computing.

In the next section, we will discuss these and other changes in more detail. This is followed
by three application examples, highlighting the capacity of the package to handle large data
sets and the use of data-specific distance functions. Benchmarks are given, comparing the

1For visualization the somoclu package provides an interface to the kohonen package.



Journal of Statistical Software 3

efficiency of the new version with the previous version of the package. The paper ends with
an outlook to future developments and some conclusions.

2. Changes in the kohonen package, version 3.0

Since the publication of the kohonen package in 2007 (Wehrens and Buydens 2007) a number
of small improvements had been made prior to version 3.0, mostly affecting the plotting
functions, and often in response to user requests or bug reports. At some point it became
apparent, however, that in order to stay relevant the package needed a more fundamental
overhaul, making it faster and, especially, more memory-efficient, in order to be able to tackle
larger data sets. The changes in version 3.0 of the kohonen package are discussed below.
They correspond to using a different interface for calling the underlying compiled code, the
possibility to define and use problem-specific distance functions on the fly, the inclusion of
the batch algorithm for training SOM maps, and smaller miscellaneous improvements.

2.1. Switching from .C to Rcpp

The most important change in the package is not visible to the user and consists of the
replacement of the .C interface, inherited from the class package, by a more efficient Rcpp

solution. The advantages of using the Rcpp interface to the underlying compiled code rather
than the original .C interface are clear and well documented (Eddelbuettel and François
2011). Here, it is particularly important that Rcpp works directly on the R objects, passed
as function arguments, instead of making local copies of these objects. This is much more
memory-efficient and especially for large data sets can make a huge difference in performance.

In addition, several functions were redesigned and rewritten at the compiled-code level. The
som and xyf functions now are wrappers for the supersom function, applicable in situations
with one and two data layers, respectively. In versions before 3.0, each of these functions
had its own C implementation, which made the code hard to maintain. As a beneficial side
effect, som and xyf can now be used when there are NAs in the data, something that in earlier
versions was only possible with the supersom function. If the argument maxNA.fraction

is set to zero (the default) no checks for NAs are performed, which leads to a further speed
increase. Function bdk has been deprecated, since it offered no added benefits over xyf and
was roughly twice as slow. The main functions of the package, supersom and the S3 methods
predict and map for ‘kohonen’ objects have been rewritten completely. Especially the latter
has become much more memory-efficient: For data sets with many records mapping could
take as long as the training phase. Although we have tried to keep the results obtained as
close as possible to the original code, there is no complete backwards compatibility – when
applying the same settings, the new kohonen version will give results that are slightly different
from the old version.

2.2. Flexible definition of distance measures

In the previous version of the kohonen package basically two distance measures were avail-
able: the Euclidean distance for numeric variables, and Tanimoto distance for factors. The
latter could only be used in xyf networks. Version 3.0 not only provides more predefined
distance measures (the Euclidean distance, the sum-of-squares distance, the Manhattan dis-
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tance, and the Tanimoto distance), they now can be used in all SOM types, and can be
defined for each layer separately2. By default, the Tanimoto distance is used for factors or
class membership matrices, and the sum-of-squares distance in all other cases. Note that
also the so-called U-matrix visualization, showing the average distance of each SOM unit to
its neighbors and available through the type = "dist.neighbours" argument of the plot

method for ‘kohonen’ objects, now is taking into account the specific distances used in train-
ing the map, as well as their corresponding weights. The same holds for methods used for
grouping codebook vectors – up to now clustering (e.g., in the examples of the plot method
for ‘kohonen’ objects) was performed on Euclidean distances in one layer only, and did not
take into account either different distance metrics nor weights. A new function has been in-
cluded, object.distances, to allow the user to calculate distances between data points (and
also between codebook vectors), according to the weighted combination of distances employed
in the SOM.

Specific distance functions appropriate for the data at hand can be defined by the user in
C++, again for every data layer separately3. In ecological applications, for example, several
specific different distance functions are routinely used, such as the Bray-Curtis and Jaccard
dissimilarities (Goslee and Urban 2007). A user-provided function implementing such a dis-
tance should take two vectors of real numbers, corresponding to the data and the codebook
vectors, the number of variables, and the number of NA values, and should return one number.
An example will be given below.

2.3. The batch SOM algorithm

The batch SOM algorithm has been available for a long time in the class package. Amazingly,
the central loop of the algorithm contains only four lines of pure R code. The main difference
with the original SOM algorithm is that the map update is performed less frequently: only
after the complete data set has been presented are the codebook vectors updated – in that
sense, the algorithm is very similar to the k-means algorithm. The learning rate α therefore
is no longer needed.

Already on the wish list in Wehrens and Buydens (2007), this algorithm has been now included
in the kohonen package. It is written in C++ for maximum performance, and is available
through the mode = "batch" argument of the som functions. Whereas it is hard to define a
useful parallel version of the online algorithm, the batch SOM algorithm does lend itself for
parallelization: The task of finding the best matching units for all records in the data set is
split up over different cores (Lawrence, Almasi, and Rushmeier 1999). This data partitioning
parallel version is available using mode = "pbatch". By default, all cores are used. This can
be changed by the user through the cores argument of the supersom function.

2.4. Miscellaneous changes

Several smaller changes have been made to the package as well. These are outlined in brief
below.

2The sum-of-squares distance for single-layered maps is equivalent to the Euclidean distance, but faster to

compute since no square root is taken; for maps with multiple layers the Euclidean and sum-of-square distances

lead to different overall distances.
3User-defined distance functions in R, even though possible in principle, would lead to much lower speeds

and are therefore not supported.
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Changes in plotting functions. Several extensions of the plotting functions have been
implemented: On the request of several users now hexagon- and square-shaped units can
be used in the plot functions. This is particularly useful for larger SOMs, where the white
space between circular units would be a distraction. If SOM units are grouped in clusters, the
cluster boundaries between units can be visualized. The validity of the clusters can be assessed
by showing the average distance to neighboring codebook vectors as unit background color,
available as type = "dist.neighbours" in the plot method for ‘kohonen’ objects. Examples
of these new features can be seen on the corresponding manual page.

Weighing different data layers. The default system of weighing different data layers
has been changed. Since distances are crucially dependent on the units in which the data
have been recorded, a set of internal distance.weights is calculated first, corresponding
to the inverses of the median distances in the individual data layer. The application of
these weights ensures an (approximately, at least) equal contribution of all layers to the final
distance measure – the user-defined weights are then used to influence this further. A user
who wants to bypass this behavior is able to do so by setting normalizeDataLayers to FALSE.

Changes in SOM grid specification. An additional argument, neighbourhood.fct has
been added to allow for a Gaussian neighborhood, that by definition always includes all units
in the map in the update step. The "bubble" neighborhood is still retained as the default,
since it is much faster. Related to this, the default for the radius parameter has changed:
For both the "bubble" and "gaussian" neighborhoods the default is to decrease linearly to
a value of zero, starting from a radius that includes two-thirds of the distances in the map.
Note that in the "bubble" case only winning units will be updated when the radius is smaller
than 1. Finally, the toroidal argument has been moved to a more appropriate location, the
somgrid function (which is now no longer imported from the class package).

Growing larger SOMs. In some cases it may be cost-effective to train a small SOM first,
to get the global structure of the data, and to extend the map with additional units in a
later stage. Function expandMap, doing exactly this, has been introduced in this version of
kohonen (taken from the soon to-be-phased out package wccsom, Wehrens 2015, see below).
This is one of two ways of obtaining a SOM with many units, potentially more than there are
records (known as an emergent SOM); the other way (already available since the first version
of the package) is to explicitly provide the initialization state through the init argument.

3. Applications

Some of the new features in kohonen will now be highlighted. First, we use an application
in image segmentation, an example of SOMs in a Big Data context, to present some relevant
benchmarks. Then, we show a couple of examples of the use of user-defined distance functions.
Code to reproduce the examples in this paper is included as demos in the kohonen package:

R> demo("JSSdemo1", package = "kohonen")

This will run the first example from the paper on image segmentation – the other two demos
are available as "JSSdemo2" and "JSSdemo3", respectively. Note that especially the first
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Figure 1: Original image of pepper plants (left) and the segmented image using 32 colors
(right).

example will take some time to complete (on an average PC from 2018 not more than a
minute, though).

3.1. Image segmentation

SOMs are particularly useful for grouping large numbers of objects. An area where this
is relevant is pixel-based image segmentation: Even a relatively small image already can
contain thousands of pixels, and databases of thousands and thousands of images are becoming
increasingly common. The aim then is to obtain an accurate description of the original images
using a limited set of “colors”, where colors may be either true colors (RGB values, as in this
paper), or artificial colors obtained from spectroscopic measurements (Franceschi and Wehrens
2014). In many applications, specific colors will be associated with objects in the image. Here,
we use one image from a set of artificial images from pepper plants, where the objective is to
separate the peppers from the plants and the background (Barth, IJsselmuiden, Hemming,
and Van Henten 2018).4

In principle, segmentation of an image using self-organizing maps is easy enough – one can
present the color values of the individual pixels to the SOM and observe where they will end
up in the map. The image that we will use as an example, a synthetic (but very realistic)
image of a pepper plant is shown in the left plot of Figure 1. Image segmentation can help in
getting a simple and quick idea of the number and the size of the peppers on a large number
of plants, a process known as high-throughput phenotyping.

The segmented image is shown in the right panel of Figure 1. It consists of a total of 32
different colors, each corresponding to one SOM unit. The cartoon-like representation still
shows the most important features. In this case we have performed the analysis using two
layers of information, the RGB values of the individual pixels in the first SOM layer, and the
pixel positions in the image in the second. The idea is that pixels mapping to the same unit
in the SOM will not only have the same color, but will also be close together in the image.
The tessellation-like pattern in the segmented image that is the result from this is clearly
visible. To achieve this, we give quite a high weight to the pixel coordinate layer:

R> mygrid <- somgrid(4, 8, "hexagonal")

R> set.seed(15)

4The complete data, containing 10,500 images of 600 × 800 pixels, is available from doi:10.4121/uuid:

884958f5-b868-46e1-b3d8-a0b5d91b02c0.
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Figure 2: Left plot: Codebook vectors for the RGB layer of the SOM; background colors
indicate the dominant class of pixels mapping to the individual units. Middle plot: Code-
book vectors for the coordinate layer of the SOM, plotted in image coordinates. Fill colors
correspond to the RGB colors of the corresponding units. Right plot: Segmentation image,
highlighting only the pixels from the two pepper units (purple background in the plot on the
left).

R> somsegm1 <- supersom(imdata, whatmap = c("rgb", "coords"),

+ user.weights = c(1, 9), grid = mygrid)

The RGB codebook vectors are shown in the left plot of Figure 2. The background colors are
associated with the dominant pixel classes mapping to the individual units (where only the
two most important classes are shown explicitly and the other six are merged as “other” – note
that since this is a synthetic image, the true pixel classes are known). One can see that the
brightest colors (the largest R, G and B segments) correspond to peppers (the pastel purple
background color), as one might expect. Note that there are two separate units where pepper
pixels tend to be projected, because of the second information layer, the X-Y coordinates of
the pixels (middle panel in Figure 2). Each circle depicts the position of the unit in the original
image; the fill color corresponds to the RGB color of the units. The numbers correspond to
the SOM units; these are covering the image in a regular fashion. The numbers of the pepper
units are indicated in red. Unit 23 corresponds to the left pepper in the image, and unit 11 to
the right pepper. Finally, the right plot in Figure 2 shows the location of the pixels mapping
to the the pepper units in the original image. Although these units contain some non-pepper
pixels the overall result is quite satisfying.

It can be a definite advantage that the two peppers in the image are projected in different
areas of the map, illustrating that image segmentation on the pixel level can sometimes profit
from additional information – in this case pixel coordinates. Other types of information that
can be useful include information of neighboring pixels, and depth information. While these
could conceptually also be included as extra columns in the original data, leading to one
SOM layer only, keeping this information in additional layers provides more flexibility: One



8 Flexible Self-Organizing Maps in kohonen 3.0
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Figure 3: Memory allocation for training SOMs and mapping data to a trained SOM for
different numbers of pixels.
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Figure 4: Comparison of running times of different SOM implementations, again for different
numbers of pixels. The number of logical cores employed with the training using the parallel
batch algorithm is given in brackets.

can use different weights for different layers (as was done here), or even use different distance
functions, appropriate for particular layers.

One of the main reasons for redesigning the kohonen package was the difficulty of analyzing
larger data sets, in particular those with many records. Especially memory usage was not
optimized. The improvement in the new package version is illustrated here by some simple
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benchmarks. These benchmarking experiments consist of image segmentation of parts of the
pepper plant image, RGB information only (5.5 Mb), on hexagonal grids of eight by four units,
the same as used in the example. Five different pixel subsets were used, ranging in size from
5,000 pixels to 200,000 pixels. The assessment of memory usage5 was performed using the
profmem function from the package with the same name (Bengtsson 2018), keeping track of
memory allocation during execution of the training or mapping phases. Speed benchmarking
was performed using the microbenchmark package (Mersmann 2018), and was done on a
HPC cluster node with an Intel Xeon CPU E5-2660 processor having eight physical cores and
two logical cores per physical core. One hundred repetitions are used for speed benchmarking
(the default microbenchmark).

Memory allocation during training with several forms of the supersom function as well as
during mapping the data to the trained SOM is shown in Figure 3. The old version of the
package is always shown as the bottom line in the plots. Training in the new version is more
efficient than in the old version, with small differences between batch and online algorithms.
Parallel batch algorithms show the same memory allocation as the batch algorithm, inde-
pendent of the number of nodes used in the parallel version. In the mapping phase, where
data are projected to a fully trained SOM, a huge improvement in memory usage is visible.
Memory profiling results are obtained on two computers, one running Linux and one running
Windows, and are virtually identical.

The improvement in speed is shown in Figure 4, showing the time needed for training the
SOM, and for mapping data, respectively. Training is considerably faster in the new version,
here showing an almost two-fold speed improvement. In the new version, differences between
the online and batch training are small; also the parallel batch algorithm using one core only
gives comparable timings (as expected). Using the parallel batch algorithm using more than
one core provides further considerable speed improvements. Also mapping is much faster in
the new version. Finally, the new version presents the opportunity to avoid checks for NA

values by providing maxNA.fraction = 0L (obviously for data without NAs), which would
lead to another speed-up.

3.2. User-defined distance functions

In some cases, the usual Euclidean or related distance functions are simply not optimal, and
one would rather use specific measures appropriate for the data at hand. From version 3.0
onwards, such functions can be written and compiled in C++, and a pointer to the function
can be provided to the SOM functions in kohonen. We give two examples, one from ecology,
comparing sites according to the number of different plant species found in each site, and a
crystallographic one comparing spectra where peaks are shifted in different samples.

Ecological applications. Package vegan (Oksanen et al. 2018) contains a pair of data sets
containing information on 24 sites, one set concentrating on cover values of 44 plant species
at the sites, the other on soil characteristics (Väre, Ohtonen, and Oksanen 1995). Even
though the data set is too small for a realistic application of SOMs, it does provide a good
illustration of the possibilities of using several data layers associated with specific distance
functions. First, the data are loaded and converted to matrices:

5Note that memory profiling of R functions is not easy, amongst others, because of the effects of garbage

collection – these numbers should be taken as ballpark figures.
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R> data("varespec", package = "vegan")

R> data("varechem", package = "vegan")

R> varechem <- as.matrix(varechem)

R> varespec <- as.matrix(varespec)

We train the SOM using the majority of the data, the training set, and assess its value using
the rest, the test set, here consisting of the last five records:

R> n <- nrow(varechem)

R> tr.idx <- 1:(n - 5)

R> tst.idx <- (n - 4):n

R> chemmat.tr <- scale(varechem[tr.idx, ])

R> chemmat.tst <- scale(varechem[tst.idx, ],

+ center = colMeans(varechem[tr.idx, ]),

+ scale = apply(varechem[tr.idx, ], 2, sd))

R> specmat.tr <- varespec[tr.idx, ]

R> specmat.tst <- varespec[tst.idx, ]

The aim is to group sites in such a way that sites in the same SOM unit have both a similar
species profile and similar soil characteristics. For comparing species counts over different
sites, often a Bray-Curtis dissimilarity is used, defined by

djk =
∑

i

|xij − xik|/
∑

i

(xij + xik) .

This is implemented in C++ as follows:

R> BCcode <-

+ '#include <Rcpp.h>

+ typedef double (*DistanceFunctionPtr)(double *, double *, int, int);

+

+ double brayCurtisDissim(double *data, double *codes, int n, int nNA) {

+ if (nNA > 0) return NA_REAL;

+

+ double num = 0.0, denom = 0.0;

+ for (int i = 0; i < n; i++) {

+ num += std::abs(data[i] - codes[i]);

+ denom += data[i] + codes[i];

+ }

+

+ return num/denom;

+ }

+

+ // [[Rcpp::export]]

+ Rcpp::XPtr<DistanceFunctionPtr> BrayCurtis() {

+ return Rcpp::XPtr<DistanceFunctionPtr>(

+ new DistanceFunctionPtr(&brayCurtisDissim));

+ }'
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In this piece of code, the Bray-Curtis dissimilarity is the function brayCurtisDissim. A valid
dissimilarity function in this context has four arguments: The first two are the vectors that
will be compared, the third is the length of the vectors (they should be equally long), and the
final argument is the number of NA values in the first of the two vectors. It is assumed that
the second vector (which corresponds to the codebook vectors) never contains NA values. Note
that in this example we do not allow NAs at all: Any input NA value will immediately lead to an
NA value for the distance. The last two lines define the function createBrayCurtisDistPtr

that creates a pointer to the distance function. The name of this pointer-generating function
is to be passed as argument to the SOM training and mapping functions. The C++ code can
be compiled using the Rcpp package:

R> library("Rcpp")

R> sourceCpp(code = BCcode)

Training the map now is easy. We simply provide the names of the appropriate distance
functions corresponding to the data matrices:

R> set.seed(101)

R> varesom <- supersom(list(species = specmat.tr, soil = chemmat.tr),

+ somgrid(4, 3, "hexagonal"), dist.fcts = c("BrayCurtis", "sumofsquares"))

Note that saving such a map will save the name of the distance functions employed. Loading
it again in a new session will work as expected provided that the corresponding functions are
available in the workspace, which can require recompiling the corresponding C++ code.

The trained map now can be used for making predictions as well: If a new object is mapped
to a particular unit (using the same distance functions as when training the map), then it
can be assumed that it is very close to the other objects mapping to that unit. In this way,
predictions can be made, e.g., for data layers that are absent. Without the newdata argument,
the predict method for ‘kohonen’ objects returns for each record the averages of the training
objects mapping to the same winning unit. The predict function allows one to provide the
unit.predictions values explicitly: An alternative would be to use codebook vectors rather
than averages of objects. In most cases, this would lead to very similar predictions.

R> trainingPred <- predict(varesom)

R> names(trainingPred)

[1] "predictions" "unit.classif" "unit.predictions" "whatmap"

The result is a list, where the unit.predictions element contains the average values for
individual map units, the unit.classif element contains the winning units for data records,
and predictions is the combination of the two. Both unit.predictions and predictions

are lists with, in this case, two elements: soil and species. We can visualize the expected
values for soil parameters using a color scale, as is shown in Figure 5. The code to generate
the first panel is shown here:

R> plot(varesom, type = "property", main = "Nitrogen (standardized)",

+ property = trainingPred$unit.predictions$soil[, "N"])
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Figure 5: Expected values for the first three soil parameters (standardized units) based on
mapping the training data to the SOM.

The other panels are obtained by substituting the appropriate column names (and plot titles).
The figure shows two units in gray – these are examples of units that do have codebook vectors,
but are never winning units when mapping the training data to the SOM. It is interesting to
see that the four soil parameters do not vary equally smoothly over the map.

Predictions for test data can be made using the newdata argument. The new data should
contain at least some data layers that are also present in the training data (the agreement
is checked comparing the names and dimensions of the data layers; if no names are given, it
is assumed that the data layers are presented in the same order). Layers may be selected or
weighted by using the whatmap and user.weights arguments, providing a simple way to test
different scenarios. If these arguments are not provided, the values used in training the map
are taken, usually also the most meaningful option. As an example, predictions for the test
set based on the mapping according to the soil data only are obtained as follows:

R> soilBasedPred <- predict(varesom, newdata = list(soil = chemmat.tst))

R> lapply(soilBasedPred$predictions, function(x) signif(head(x[, 1:4]), 3))

$species

Callvulg Empenigr Rhodtome Vaccmyrt

9 NA NA NA NA

12 3.29 4.21 0.517 2.85

10 NA NA NA NA

11 0.04 6.48 0.000 0.00

21 0.55 11.13 0.000 0.00

$soil

N P K Ca

9 NA NA NA NA

12 -0.493 -0.618 -0.0847 -0.206

10 NA NA NA NA

11 0.550 -0.340 -0.6510 -0.942

21 -0.809 -0.192 -0.3604 -0.107

Again we see the effect of a unit to which no training data are mapped, leading to NA values
in the predictions. In some cases, it could be useful to impute these by interpolation from
neighboring units.
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Classification of powder patterns. In Wehrens, Melssen, Buydens, and De Gelder (2005)
and Willighagen, Wehrens, Melssen, De Gelder, and Buydens (2007), a SOM package using a
specialized distance function for comparing X-ray powder diffractograms was presented, called
wccsom. These powder patterns provide information on the crystal cell structure (De Gelder,
Wehrens, and Hageman 2001) which is important in 3D structure elucidation. Structures
represented by similar unit cell parameters give rise to very similar patterns; however, patterns
may be stretched or compressed, based on the unit cell size. In many cases, one is not
interested in the unit cell size, and would like to group patterns on the basis of the peaks in
the powder pattern, irrespective of the stretching of compression that has taken place. To do
this, a distance (WCCd) based on the weighted cross-correlation (WCC) was used in package
wccsom, given by

WCCd = 1 − WCC = 1 − f⊤Wg√
f⊤Wf

√

g⊤Wg
.

Here, f and g are vectors of observations (in this case along measurement angles, but in other
applications this could be a time axis, for example). W is a banded matrix with ones on
the diagonal and values progressively smaller further away from the diagonal. After a certain
number of rows (or columns), only zeros are present; this number, the width of the band,
is indicated with a parameter θ. If θ = 0 (and W becomes a diagonal matrix) the second
term on the right hand side in the equation reduces to the Pearson correlation coefficient.
The WCC has also been used in other applications, such as aligning chromatographic pro-
files (Wehrens, Carvalho, and Fraser 2015b) using the ptw package (Bloemberg et al. 2010;
Wehrens, Bloemberg, and Eilers 2015a).

The purpose of this example is to show how to emulate the wccsom package with kohonen –
the wccsom package itself will soon be phased out. More information on the background and
the interpretation of the results can be found in the original wccsom publications (Wehrens
et al. 2005; Willighagen et al. 2007).

The code for the WCCd dissimilarity is saved in a file called wcc.cpp (in the inst/Distances

sub-directory of the package), structured in much the same way as previously the Bray-Curtis
distance (which is available in the same directory). Parameter θ is hard-coded in this distance
function (here it is set to a value of 20); if one wants to try different values of θ it is easy to
define several distance functions. The data consist of 131 structures, a subset of a set of 205
used earlier in Wehrens et al. (2005) and Willighagen et al. (2007).

R> data("degelder", package = "kohonen")

R> mydata <- list(patterns = degelder$patterns,

+ CellVol = log(degelder$properties[, "cell.vol"]))

Figure 6 shows the powder patterns of four of the structures from two different space groups.
Studying the variability in such a data set may show interesting groupings and may help in
the structure elucidation of unknown compounds (Wehrens et al. 2005).

When mapping the patterns to a SOM, the X-ray powder patterns are used as the first layer,
and the cell volume as the second layer. This will bring crystal structures together that have
similar diffraction patterns as well as similar cell volumes. Since the cell volume has a very
large range, logarithms are used. The distance function for the cell volume is the standard
sum-of-squares distance, and the WCCd distance is defined in wcc.cpp:
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Figure 6: Examples of powder patterns from two different space groups: The left panel shows
very similar patterns (a WCC distance of 0.08) whereas the right panel shows a more different
couple (0.39).

Diffraction patterns Cell volume

Figure 7: Codebook vectors for the two data layers in the powder diffraction map.

R> sourceCpp(file.path(path.package("kohonen"), "Distances", "wcc.cpp"))

R> set.seed(7)

R> powsom <- supersom(data = mydata, grid = somgrid(6, 4, "hexagonal"),

+ dist.fcts = c("WCCd", "sumofsquares"), keep.data = TRUE)

The codebook vectors of the trained map are shown in Figure 7. The crystal structures with
the largest cell volumes are located in the left part of the map. We could use such a map to
estimate the cell volume for new diffraction patterns, simply by projecting the powder patterns
into the map on the basis of the WCCd dissimilarity. Then, the cell volume associated with
the winning unit will be used as the prediction:

R> cellPreds <- predict(powsom, newdata = mydata, whatmap = "patterns")

R> names(cellPreds)

[1] "predictions" "unit.classif" "unit.predictions" "whatmap"
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R> cellPreds$predictions$CellVol[1:5, ]

asageg asuyes axerie axerok azuyoj

8.091085 6.852079 8.093932 7.121513 7.290206

Again, the predict function makes it possible to combine data in a number of different ways.
Here we present the complete data including all layers, and use the whatmap argument to
determine which layer is to be used for mapping the objects to the map. In many cases this is
easier than subsetting the data or creating specific new data objects, and allows for an easy
investigation of different scenarios and the relation between the individual data layers.

4. Conclusions and outlook

In this Big Data era there is more and more need for methods that group large numbers of
records, and fuse different data layers associated with these records. SOMs, and in particular
the supersom variant implemented in the kohonen package, are very useful tools in this
respect. They can be used to assess groupings in the data, but also to see structure within
groups. The package enables users to investigate their data in a quick and easy way, and
allows for what-if scenarios by switching data layers in or out, or by changing weights for
individual layers.

This paper concentrates on several improvements of the package. In particular the possibility
of including data-specific distance or dissimilarity functions is an important feature that
should increase the applicability of SOM methodology in a number of fields. It should be
noted that the update of the codebook vectors during training still is done through (weighted)
averaging; conceivably, for some types of data and distance functions this is not the optimal
route. In the same way as user-defined distance functions, user-defined update functions are
a real possibility. Significant performance improvements have been obtained, also by the
inclusion of the batch algorithm and, in particular, its parallel version.

As it is now, the package is a reasonably rounded and complete set of functions. One obvious
extension is to make the plotting functions more interactive, so that it would be more easy
to switch between different visualizations. Another major improvement in the context of
Big Data would be if objects could be sampled from external databases without explicitly
having to import them in the form of one self-contained data set, or to allow streaming data
to come in for permanent updates of the codebook vectors. The latter aspect would almost
automatically also require aspects of the interactive graphics mentioned earlier. For these and
other improvements, user contributions are warmly welcomed. We hope in the mean time
that the package will continue to find use in many diverse fields of science.
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