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1 Introduction

The population regression model is given by

ξ : Yi = xT
i θ + σ

√
viEi, θ ∈ Rp, σ > 0, i ∈ U, (1)

where

• the population U is of size N ,

• the parameters θ and σ are unknown,

• the xi’s are known values (possibly containing outliers), xi ∈ Rp, 1 ≤ p < N ; we denote the
design matrix by X = (x1, . . . ,xn)

T ,

• the vi’s are known positive (heteroscedasticity) constants,

• the errors Ei are independent and identically distributed (i.i.d.) random variables (r.v.) with
zero expectation and unit variance,

• it is assumed that
∑

i∈U xix
T
i /vi is a non-singular (p× p) matrix.

Remarks. The i.i.d. assumption on the errors Ei is rather strict. This assumption can be replaced
by the assumption that the Ei are identically distributed r.v. such that Eξ(Ei | xi, . . . ,xN ) = 0 and
Eξ(EiEj | xi, . . . ,xN ) = 1 if i = j and zero otherwise for all i, j ∈ U , where Eξ denotes expecta-
tion w.r.t. model ξ in (1). Another generalization obtains by requiring that Eξ(Eixi) = Eξ(xiEi) = 0

in place of the conditional expectation. If the distribution of the errors Ei is asymmetric with non-
zero mean, the regression intercept and the errors are confounded. The slope parameters, how-
ever, are identifiable with asymmetric distributions (Carroll and Welsh, 1988). In the context of
GREG prediction, however, we deal with prediction under the model. Thus, identifiability is not an
issue.

It is assumed that a sample s is drawn from U with sampling design p(s) such that the inde-
pendence (orthogonality) structure of the model errors in (1) is maintained. The sample regression
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M - and GM -estimator of θ are defined as the root to the following estimating equations (cf. Ham-
pel, Ronchetti, Rousseeuw, and Stahel, 1986, Chapter 6.3)∑

i∈s

wi√
vi
ψk(ri)xi = 0 (M -estimator),

∑
i∈s

wi√
vi
h(xi)ψk(ri)xi = 0 (Mallows GM -estimator),

∑
i∈s

wi√
vi
h(xi)ψk

(
ri

h(xi)

)
xi = 0 (Schweppe GM -estimator),

where

• wi is the sampling weight,

• ψk is a generic ψ-function indexed by the robustness tuning constant k,

• ri is the standardized residual, defined as

ri =
yi − xT

i θ

σ
√
vi

, (2)

• h : Rp → R+ is a weight function,

• σ is the regression scale which is estimated by the (normalized) weighted median of the
absolute deviations from the weighted median of the residuals.

The Huber and Tukey bisquare (biweight) ψ-functions are denoted by, respectively, ψhub
k and ψtuk

k .
The sample-based estimators of θ can be written as a weighted least squares problem∑

i∈s

wi

vi
ui(ri, k)(yi − xT

i θ̂n)xi = 0,

where

ui(ri, k) =



ψk(ri)

ri
M -estimator,

h(xi)
ψk(ri)

ri
Mallows GM -estimator,

ψk(r
∗
i )

r∗i
, where r∗i =

ri
h(xi)

Schweppe GM -estimator,

(3)

and k denotes the robustness tuning constant.
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2 Representation of the robust GREG as a QR-predictor

The robust GREG predictor of the population y-total can be written in terms of the g-weights (see
e.g. Särndal, Swensson, and Wretman, 1992, Chapter 6) as

t̂ roby =
∑
i∈s

giyi, (4)

where the g-weights are defined as (Duchesne, 1999)

gi = bi +
(
tx − t̂bx

)T (∑
i∈s

qixix
T
i

)−1

qixi, (5)

where t̂bx =
∑

i∈s bixi and tx =
∑

i∈U xi. The sampling weights, wi, are “embedded” into the
g-weights in (4).

In contrast to the non-robust "standard" GREG predictor, the g-weights in (5) depend on the
study variable, yi, through the choice of the constants (qi, bi) = {(qi, bi) : i ∈ s}. This will be easily
recognized once we define the set of constants. The predictors of the population y-total that are
defined in terms of the constants (qi, ri) form the class of QR-predictor due to (Wright, 1983).
In passing we note that t̂ roby can be expressed in a “standard” GREG representation. Let

θ̂ =

(∑
i∈s

qixix
T
i

)−1∑
i∈s

qixiyi,

then t̂ roby in (4) can be written as

t̂ roby =
∑
i∈s

biyi +
(
tx − t̂bx

)T
θ̂ = tTx θ̂ +

∑
i∈s

bi(yi − xT
i θ̂).

In the next two sections, we define the constants (qi, bi) of the QR-predictor.

2.1 Constants qi of the QR-predictor

The set of constants {qi} is defined as

qi =
wi · ui(ri, k)

vi
, i = 1, . . . , n, (6)

where vi is given in (1) and ui(ri, k) is defined in (3). The tuning constant k in ui(ri, k) is the one
that is used to estimate θ.

2.2 Constants bi of the QR-predictor

The constants {bi} are predictor-specific. They depend on the argument type. Moreover, the
bi’s depend on the robustness tuning constant k – which is an argument of svymean_reg() and
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svytotal_reg() – to control the robustness of the prediction. To distinguish it from the tuning
constant k, which is used in fitting model ξ in (1), it will be denoted by κ. Seven sets {bi} are
available.

type = "projective": bi ≡ 0 (Särndal and Wright, 1984),

type = "ADU": bi ≡ wi (Särndal et al., 1992, Chapter 6),

type = "huber": bi ≡ wi · ui(ri, κ), where ui is defined in (3) with ψk ≡ ψhub
k (Lee, 1995;

Hulliger, 1995; Beaumont and Alavi, 2004),

type = "tukey": bi ≡ wi · ui(ri, κ), where ui is defined in (3) with ψk ≡ ψtuk
k (Lee, 1995;

Hulliger, 1995; Beaumont and Alavi, 2004),

type = "lee": bi ≡ κ · wi, where 0 ≤ κ ≤ 1 (Lee, 1991, 1995),

type = "BR": bi ≡ wi ·ui(ri, κ), where ui is defined in (3) with ψk replaced by (Beaumont and
Rivest, 2009)

ψmod
k (x) =

x

wi
+
wi − 1

wi
ψhub
k (x),

type = "duchesne": bi ≡ wi · ui(ri; a, b), where ui is defined in (3) with ψk replaced by
(Duchesne, 1999)

ψhub
a,b (x) =


x if |x| ≤ a,

a · sign(x) if |x| > a and |x| < a/b,

b · x if |x| > a/b,

where ψhub
a,b is a modified Huber ψ-function with tuning constants a and b (in place of κ).

Duchesne (1999) suggested the default parametrization a = 9 and b = 0.25.

2.3 Implementation

Let q = (q1, . . . , qn)
T and b = (b1, . . . , bn)

T , where qi and bi are defined in, respectively, (6) and
Section 2.2. Put Z =

√
q ◦ X, where ◦ denotes Hadamard multiplication and the square root is

applied element by element. The vector-valued g-weights, g = (g1, . . . , gn)
T , in (5) can be written

as
gT = bT +

(
tx − t̂bx

)T (
ZTZ

)−1
ZT︸ ︷︷ ︸

=H, say

◦(√q)T .

Define the QR factorization Z = QR, where Q is an orthogonal matrix and R is an upper tri-
angular matrix (both of conformable size). Note that the matrix QR-factorization and Wright’s
QR-estimators have nothing in common besides the name; in particular, q and Q are unrelated.
With this we have

H =
(
ZTZ

)−1
ZT = R−1QT
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and multiplying both sides by R, we get RH = QT which can be solved easily for H since R is an
upper triangular matrix (see base::backsolve()). Thus, the g-weights can be computed as

g = b+HT
(
tx − t̂bx

)
◦ √q,

where the (p×n) matrix H need not be explicitly transposed when using base::crossprod().
The terms b and t̂bx are easy to compute. Thus,

t̂ roby = gTy, where y = (y1, . . . , yn)
T .

3 Variance estimation

Remark. Inference of the regression estimator is only implemented under the assumption of rep-
resentative outliers (in the sense of Chambers, 1986). We do not cover inference in presence of
nonrepresentative outliers.

Our discussion for variance estimation follows the line of reasoning in Särndal et al. (1992, p. 233–
234) on the variance of the non-robust GREG estimator. To this end, denote by Ei = yi − xT

i θN ,
i ∈ U , the census residuals, where θN is the census parameter. With this, any g-weighted predictor
can be written as

t̂ roby =
∑
i∈s

giyi =
∑
i∈s

gi(x
T
i θN + Ei) =

∑
i∈U

xT
i θN +

∑
i∈s

giEi, (7)

where we have used the fact that the g-weights in (5) satisfy the calibration property∑
i∈s

gixi =
∑
i∈U

xi.

The first term on the r.h.s. of the last equality in (7) is a population quantity and does therefore
not contribute to the variance of t̂ roby . Thus, we can calculate the variance of the robust GREG
predictor by

var
(
t̂ roby

)
= var

(∑
i∈s

giEi

)
(8)

under the assumptions that (1) the Ei are known quantities and (2) the gi do not depend on the yi.
Disregarding the fact that the g-weights are sample dependent and substituting the sample

residual ri for Ei in (8), Särndal et al. (1992, p. 233-234 and Result 6.6.1) propose to estimate the
variance of the GREG predictor by the g-weighted variance of the total

∑
i∈s giri. Following the

same train of thought and disregarding in addition that the gi depend on yi, the variance of t̂ roby

can be approximated by

v̂ar
(
t̂ roby

)
≈ v̂ar

(∑
i∈s

giri

)
,

where v̂ar(·) denotes a variance estimator of a total for the sampling design p(s).
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