Learn and Apply Directed Acyclic Graphs for Causal Inference


[Up] [Top]

Documentation for package ‘cia’ version 1.0.0

Help Pages

BNLearnScorer BNLearnScorer
CalculateAcceptanceRates Calculate acceptance rates
CalculateEdgeProbabilities Calculate pairwise edge probabilities
CalculateFeatureMean Calculate arithmetic mean for a DAG feature
CollectUniqueObjects Collect unique objects
CreateScorer Scorer constructor
DAGtoCPDAG Convert DAG to CPDAG
DAGtoPartition Convert DAG to partition
DefaultProposal Default proposal constructor
FlattenChains Flatten chains
GetEmptyDAG Get an empty DAG given a set of nodes.
GetIncrementalScoringEdges Get incremental edges
GetLowestPairwiseScoringEdges Preprocessing for blacklisting Get the lowest pairwise scoring edges.
GetMAP Get the maximum a posteriori state
MutilateGraph Mutilate graph
PartitionMCMC Transition objects. Partition MCMC
PartitiontoDAG Sample DAG from partition
PlotConcordance Concordance plot
PlotCumulativeMeanTrace Plot cumulative mean trace plot.
PlotScoreTrace Plot the score trace
PostProcessChains Index chains for further analysis
SampleChains Sample chains
SampleEdgeProbabilities Sample edge probabilities
SamplePosteriorPredictiveChains Draw from a posterior predictive distribution
ScoreDAG Score DAG.
ScoreLabelledPartition Score labelled partition
toBNLearn Convert to bnlearn object.
togRain Convert to a gRain object.
toMatrix Convert to adjacency matrix.
UniformlySampleDAG Uniformly sample DAG
[.cia_chain Index a cia_chain object
[.cia_chains Index a cia_chains object
[.cia_post_chain Indexing with respect to iterations.
[.cia_post_chains Index a cia_post_chains object with respect to iterations.
[[.cia_chains Index a cia_chains object
[[.cia_post_chains Index a cia_post_chains object.