CRAN Package Check Results for Package fixest

Last updated on 2025-01-23 19:49:23 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.12.1 97.67 286.81 384.48 NOTE
r-devel-linux-x86_64-debian-gcc 0.12.1 69.32 184.28 253.60 NOTE
r-devel-linux-x86_64-fedora-clang 0.12.1 673.32 OK
r-devel-linux-x86_64-fedora-gcc 0.12.1 636.00 OK
r-devel-windows-x86_64 0.12.1 99.00 309.00 408.00 NOTE
r-patched-linux-x86_64 0.12.1 106.51 262.20 368.71 OK
r-release-linux-x86_64 0.12.1 101.72 261.43 363.15 OK
r-release-macos-arm64 0.12.1 183.00 NOTE
r-release-macos-x86_64 0.12.1 460.00 NOTE
r-release-windows-x86_64 0.12.1 95.00 299.00 394.00 NOTE
r-oldrel-macos-arm64 0.12.1 167.00 NOTE
r-oldrel-macos-x86_64 0.12.1 296.00 NOTE
r-oldrel-windows-x86_64 0.12.1 118.00 363.00 481.00 ERROR

Check Details

Version: 0.12.1
Check: Rd cross-references
Result: NOTE Found the following Rd file(s) with Rd \link{} targets missing package anchors: feNmlm.Rd: jacobian, genD Please provide package anchors for all Rd \link{} targets not in the package itself and the base packages. Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-windows-x86_64

Version: 0.12.1
Check: installed package size
Result: NOTE installed size is 11.8Mb sub-directories of 1Mb or more: R 2.0Mb doc 3.6Mb libs 5.0Mb Flavors: r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Version: 0.12.1
Check: tests
Result: ERROR Running 'fixest_tests.R' [16s] Running the tests in 'tests/fixest_tests.R' failed. Complete output: > #----------------------------------------------# > # Author: Laurent Berge > # Date creation: Fri Jul 10 09:03:06 2020 > # ~: package sniff tests > #----------------------------------------------# > > # Not everything is currently covered, but I'll improve it over time > > # Some functions are not trivial to test properly though > > library(fixest) > > test = fixest:::test ; chunk = fixest:::chunk > vcovClust = fixest:::vcovClust > stvec = stringmagic::string_vec_alias() > > setFixest_notes(FALSE) > > if(fixest:::is_r_check()){ + if(requireNamespace("data.table", quietly = TRUE)){ + library(data.table) + data.table::setDTthreads(1) + } + setFixest_nthreads(1) + } > > #### > #### ESTIMATIONS #### > #### > > #### > #### ... Main #### > #### > > > chunk("ESTIMATION") ESTIMATION > > set.seed(0) > > base = iris > names(base) = c("y", "x1", "x2", "x3", "species") > base$fe_2 = rep(1:5, 30) > base$fe_3 = sample(15, 150, TRUE) > base$constant = 5 > base$y_int = as.integer(base$y) > base$w = as.vector(unclass(base$species) - 0.95) > base$offset_value = unclass(base$species) - 0.95 > base$y_01 = 1 * ((scale(base$x1) + rnorm(150)) > 0) > # what follows to avoid removal of fixed-effects (logit is pain in the neck) > base$y_01[1:5 + rep(c(0, 50, 100), each = 5)] = 1 > base$y_01[6:10 + rep(c(0, 50, 100), each = 5)] = 0 > # We enforce the removal of observations > base$y_int_null = base$y_int > base$y_int_null[base$fe_3 %in% 1:5] = 0 > > for(model in c("ols", "pois", "logit", "negbin", "Gamma")){ + cat("Model: ", format(model, width = 6), sep = "") + for(use_weights in c(FALSE, TRUE)){ + my_weight = NULL + if(use_weights) my_weight = base$w + + for(use_offset in c(FALSE, TRUE)){ + my_offset = NULL + if(use_offset) my_offset = base$offset_value + + for(id_fe in 0:9){ + + cat(".") + + tol = switch(model, "negbin" = 1e-2, "logit" = 3e-5, 1e-5) + + # Setting up the formula to accommodate FEs + if(id_fe == 0){ + fml_fixest = fml_stats = y ~ x1 + } else if(id_fe == 1){ + fml_fixest = y ~ x1 | species + fml_stats = y ~ x1 + factor(species) + } else if(id_fe == 2){ + fml_fixest = y ~ x1 | species + fe_2 + fml_stats = y ~ x1 + factor(species) + factor(fe_2) + } else if(id_fe == 3){ + # varying slope + fml_fixest = y ~ x1 | species[[x2]] + fml_stats = y ~ x1 + x2:species + } else if(id_fe == 4){ + # varying slope -- 1 VS, 1 FE + fml_fixest = y ~ x1 | species[[x2]] + fe_2 + fml_stats = y ~ x1 + x2:species + factor(fe_2) + } else if(id_fe == 5){ + # varying slope -- 2 VS + fml_fixest = y ~ x1 | species[x2] + fml_stats = y ~ x1 + x2:species + species + } else if(id_fe == 6){ + # varying slope -- 2 VS bis + fml_fixest = y ~ x1 | species[[x2]] + fe_2[[x3]] + fml_stats = y ~ x1 + x2:species + x3:factor(fe_2) + } else if(id_fe == 7){ + # Combined clusters + fml_fixest = y ~ x1 + x2 | species^fe_2 + fml_stats = y ~ x1 + x2 + paste(species, fe_2) + } else if(id_fe == 8){ + fml_fixest = y ~ x1 | species[x2] + fe_2[x3] + fe_3 + fml_stats = y ~ x1 + species + i(species, x2) + factor(fe_2) + i(fe_2, x3) + factor(fe_3) + } else if(id_fe == 9){ + fml_fixest = y ~ x1 | species + fe_2[x2,x3] + fe_3 + fml_stats = y ~ x1 + species + factor(fe_2) + i(fe_2, x2) + i(fe_2, x3) + factor(fe_3) + } + + # ad hoc modifications of the formula + if(model == "logit"){ + fml_fixest = xpd(y_01 ~ ..rhs, ..rhs = fml_fixest[[3]]) + fml_stats = xpd(y_01 ~ ..rhs, ..rhs = fml_stats[[3]]) + + # The estimations are OK, conv differences out of my control + if(id_fe %in% 8:9) tol = 0.5 + + } else if(model == "pois"){ + fml_fixest = xpd(y_int_null ~ ..rhs, ..rhs = fml_fixest[[3]]) + fml_stats = xpd(y_int_null ~ ..rhs, ..rhs = fml_stats[[3]]) + + } else if(model %in% c("negbin", "Gamma")){ + fml_fixest = xpd(y_int ~ ..rhs, ..rhs = fml_fixest[[3]]) + fml_stats = xpd(y_int ~ ..rhs, ..rhs = fml_stats[[3]]) + } + + adj = 1 + if(model == "ols"){ + res = feols(fml_fixest, base, weights = my_weight, offset = my_offset) + res_bis = lm(fml_stats, base, weights = my_weight, offset = my_offset) + + } else if(model %in% c("pois", "logit", "Gamma")){ + adj = 0 + if(model == "Gamma" && use_offset) next + + my_family = switch(model, pois = poisson(), logit = binomial(), Gamma = Gamma()) + + res = feglm(fml_fixest, base, family = my_family, weights = my_weight, offset = my_offset) + + if(!is.null(res$obs_selection$obsRemoved)){ + qui = res$obs_selection$obsRemoved + + # I MUST do that.... => subset does not work... + base_tmp = base[qui, ] + base_tmp$my_offset = my_offset[qui] + base_tmp$my_weight = my_weight[qui] + res_bis = glm(fml_stats, base_tmp, family = my_family, weights = my_weight, offset = my_offset) + } else { + res_bis = glm(fml_stats, data = base, family = my_family, weights = my_weight, offset = my_offset) + } + + } else if(model == "negbin"){ + # no offset in glm.nb + no VS in fenegbin + no weights in fenegbin + if(use_weights || use_offset || id_fe > 2) next + + res = fenegbin(fml_fixest, base, notes = FALSE) + res_bis = MASS::glm.nb(fml_stats, base) + + } + + test(coef(res)["x1"], coef(res_bis)["x1"], "~", tol) + test(se(res, se = "st", ssc = ssc(adj = adj))["x1"], se(res_bis)["x1"], "~", tol) + test(pvalue(res, se = "st", ssc = ssc(adj = adj))["x1"], pvalue(res_bis)["x1"], "~", tol*10**(model == "negbin")) + # cat("Model: ", model, ", FE: ", id_fe, ", weight: ", use_weights, ", offset: ", use_offset, "\n", sep="") + + } + cat("|") + } + } + cat("\n") + } Model: ols ..........|..........|..........|..........| Model: pois ..........|..........|..........|..........| Model: logit ..........|..........|..........|..........| Model: negbin..........|..........|..........|..........| Model: Gamma ..........|..........|..........|..........| There were 36 warnings (use warnings() to see them) > > #### > #### ... Corner cases #### > #### > > chunk("Corner cases") CORNER CASES > > > # We test the absence of bugs > > base = iris > names(base) = c("y", "x1", "x2", "x3", "fe1") > base$fe2 = rep(1:5, 30) > base$y[1:5] = NA > base$x1[4:8] = NA > base$x2[4:21] = NA > base$x3[110:111] = NA > base$fe1[110:118] = NA > base$fe2[base$fe2 == 1] = 0 > base$fe3 = sample(letters[1:5], 150, TRUE) > base$period = rep(1:50, 3) > base$x_cst = 1 > > res = feols(y ~ 1 | csw(fe1, fe1^fe2), base) > > res = feols(y ~ 1 + csw(x1, i(fe1)) | fe2, base) > > res = feols(y ~ csw(f(x1, 1:2), x2) | sw0(fe2, fe2^fe3), base, panel.id = ~ fe1 + period) > > res = feols(d(y) ~ -1 + d(x2), base, panel.id = ~ fe1 + period) > test(length(coef(res)), 1) > > res = feols(c(y, x1) ~ 1 | fe1 | x2 ~ x3, base) > > res = feols(y ~ x1 | fe1[x2] + fe2[x2], base) > > # > # NA models (ie all variables are collinear with the FEs) > # > > # Should work when warn = FALSE or multiple est > for(i in 1:2){ + fun = switch(i, "1" = feols, "2" = feglm) + + res = feols(y ~ x_cst | fe1, base, warn = FALSE) + res # => no error + etable(res) # => no error + + # error when warn = TRUE + test(feols(y ~ x_cst | fe1, base), "err") + + # multiple est => no error + res = feols(c(y, x1) ~ x_cst | fe1, base) + res # => no error + etable(res) # => no error + } > > > # Removing the intercept!!! > > res = feols(y ~ -1 + x1 + i(fe1), base) > test("(Intercept)" %in% names(res$coefficients), FALSE) > > res = feols(y ~ -1 + x1 + factor(fe1), base) > test("(Intercept)" %in% names(res$coefficients), FALSE) > > res = feols(y ~ -1 + x1 + i(fe1) + i(fe2), base) > test("(Intercept)" %in% names(res$coefficients), FALSE) > test(is.null(res$collin.var), TRUE) > > > # IV + interacted FEs > res = feols(y ~ x1 | fe1^fe2 | x2 ~ x3, base) > > # IVs no exo var > res = feols(y ~ 0 | x2 ~ x3, base) > # Same in stepwise > res = feols(y ~ 0 | sw0(fe1) | x2 ~ x3, base) > > # IVs + lags > res = feols(y ~ x1 | fe1^fe2 | l(x2, -1:1) ~ l(x3, -1:1), base, panel.id = ~ fe1 + period) > > # functions in interactions > res = feols(y ~ x1 | factor(fe1)^factor(fe2), base) > res = feols(y ~ x1 | round(x2^2), base) > test(feols(y ~ x1 | factor(fe1^fe2), base), "err") > > res = feols(y ~ x1 | bin(x2, "bin::1")^fe1 + fe1^fe2, base) > > # 1 obs (after FE removal) estimation > base_1obs = data.frame(y = c(1, 0), fe = c(1, 2), x = c(1, 0)) > test(fepois(y ~ x | fe, base_1obs), "err") > # no error > res = fepois(y ~ 1 | fe, base_1obs) > > # warning when demeaning algo reaches max iterations > data(trade) > test(feols(Euros ~ log(dist_km) | Destination + Origin + Product, + trade, fixef.iter = 1), "warn") > > > #### > #### ... Fit methods #### > #### > > chunk("Fit methods") FIT METHODS > > base = iris > names(base) = c("y", "x1", "x2", "x3", "species") > base$y_int = as.integer(base$y) > base$y_log = sample(c(TRUE, FALSE), 150, TRUE) > > res = feglm.fit(base$y, base[, 2:4]) > res_bis = feglm(y ~ -1 + x1 + x2 + x3, base) > test(coef(res), coef(res_bis)) > > res = feglm.fit(base$y_int, base[, 2:4]) > res_bis = feglm(y_int ~ -1 + x1 + x2 + x3, base) > test(coef(res), coef(res_bis)) > > res = feglm.fit(base$y_log, base[, 2:4]) > res_bis = feglm(y_log ~ -1 + x1 + x2 + x3, base) > test(coef(res), coef(res_bis)) > > > > res = feglm.fit(base$y, base[, 2:4], family = "poisson") > res_bis = feglm(y ~ -1 + x1 + x2 + x3, base, family = "poisson") > test(coef(res), coef(res_bis)) > > res = feglm.fit(base$y_int, base[, 2:4], family = "poisson") > res_bis = feglm(y_int ~ -1 + x1 + x2 + x3, base, family = "poisson") > test(coef(res), coef(res_bis)) > > res = feglm.fit(base$y_log, base[, 2:4], family = "poisson") > res_bis = feglm(y_log ~ -1 + x1 + x2 + x3, base, family = "poisson") > test(coef(res), coef(res_bis)) > > #### > #### global variables #### > #### > > chunk("globals") GLOBALS > > est_reg = function(df, yvar, xvar, refgrp) { + feols(.[yvar] ~ i(.[xvar], ref = refgrp), data = df) + } > > (est = est_reg(iris, "Sepal.Length", "Species", ref = "setosa")) OLS estimation, Dep. Var.: Sepal.Length Observations: 150 Standard-errors: IID Estimate Std. Error t value Pr(>|t|) (Intercept) 5.006 0.072802 68.76164 < 2.2e-16 *** Species::versicolor 0.930 0.102958 9.03282 8.7702e-16 *** Species::virginica 1.582 0.102958 15.36551 < 2.2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 RMSE: 0.509616 Adj. R2: 0.613518 > > # checking when it should not work > base = setNames(iris, c("y", "x1", "x2", "x3", "species")) > > z = base$x1 > test(feols(y ~ z, base), "err") > > > > #### > #### ... Collinearity #### > #### > > chunk("COLLINEARITY") COLLINEARITY > > base = iris > names(base) = c("y", "x1", "x2", "x3", "species") > base$constant = 5 > base$y_int = as.integer(base$y) > base$w = as.vector(unclass(base$species) - 0.95) > > for(useWeights in c(FALSE, TRUE)){ + for(model in c("ols", "pois")){ + for(use_fe in c(FALSE, TRUE)){ + cat(".") + + my_weight = NULL + if(useWeights) my_weight = base$w + + adj = 1 + if(model == "ols"){ + if(!use_fe){ + res = feols(y ~ x1 + constant, base, weights = my_weight) + res_bis = lm(y ~ x1 + constant, base, weights = my_weight) + } else { + res = feols(y ~ x1 + constant | species, base, weights = my_weight) + res_bis = lm(y ~ x1 + constant + species, base, weights = my_weight) + } + } else { + if(!use_fe){ + res = fepois(y_int ~ x1 + constant, base, weights = my_weight) + res_bis = glm(y_int ~ x1 + constant, base, weights = my_weight, family = poisson) + } else { + res = fepois(y_int ~ x1 + constant | species, base, weights = my_weight) + res_bis = glm(y_int ~ x1 + constant + species, base, weights = my_weight, family = poisson) + } + adj = 0 + } + + test(coef(res)["x1"], coef(res_bis)["x1"], "~") + test(se(res, se = "st", ssc = ssc(adj=adj))["x1"], se(res_bis)["x1"], "~") + # cat("Weight: ", useWeights, ", model: ", model, ", FE: ", use_fe, "\n", sep="") + + } + } + } ........> cat("\n") > > > #### > #### ... Non linear tests #### > #### > > chunk("NON LINEAR") NON LINEAR > > base = iris > names(base) = c("y", "x1", "x2", "x3", "species") > > tab = c("versicolor" = 5, "setosa" = 0, "virginica" = -5) > > fun_nl = function(a, b, spec){ + res = as.numeric(tab[spec]) + a*res + b*res^2 + } > > est_nl = feNmlm(y ~ x1, base, NL.fml = ~fun_nl(a, b, species), NL.start = 1, family = "gaussian") > > base$var_spec = as.numeric(tab[base$species]) > > est_lin = feols(y ~ x1 + var_spec + I(var_spec^2), base) > > test(coef(est_nl), coef(est_lin)[c(3, 4, 1, 2)], "~") > > #### > #### ... Lagging #### > #### > > # Different types of lag > # 1) check no error in wide variety of situations > # 2) check consistency > > chunk("LAGGING") LAGGING > > data(base_did) > base = base_did > > n = nrow(base) > > set.seed(0) > base$y_na = base$y ; base$y_na[sample(n, 50)] = NA > base$period_txt = letters[base$period] > ten_dates = c("1960-01-15", "1960-01-16", "1960-03-31", "1960-04-05", "1960-05-12", "1960-05-25", "1960-06-20", "1960-07-30", "1965-01-02", "2002-12-05") > base$period_date = as.Date(ten_dates, "%Y-%m-%d")[base$period] > base$y_0 = base$y**2 ; base$y_0[base$id == 1] = 0 > > # We compute the lags "by hand" > base = base[order(base$id, base$period), ] > base$x1_lag = c(NA, base$x1[-n]) ; base$x1_lag[base$period == 1] = NA > base$x1_lead = c(base$x1[-1], NA) ; base$x1_lead[base$period == 10] = NA > base$x1_diff = base$x1 - base$x1_lag > > # we create holes > base$period_bis = base$period ; base$period_bis[base$period_bis == 5] = 50 > base$x1_lag_hole = base$x1_lag ; base$x1_lag_hole[base$period %in% c(5, 6)] = NA > base$x1_lead_hole = base$x1_lead ; base$x1_lead_hole[base$period %in% c(4, 5)] = NA > > # we reshuffle the base > base = base[sample(n), ] > > # > # Checks consistency > # > > cat("consistentcy...") consistentcy...> > test(lag(x1 ~ id + period, data = base), base$x1_lag) > test(lag(x1 ~ id + period, -1, data = base), base$x1_lead) > > test(lag(x1 ~ id + period_bis, data = base), base$x1_lag_hole) > test(lag(x1 ~ id + period_bis, -1, data = base), base$x1_lead_hole) > > test(lag(x1 ~ id + period_txt, data = base), base$x1_lag) > test(lag(x1 ~ id + period_txt, -1, data = base), base$x1_lead) > > test(lag(x1 ~ id + period_date, data = base), base$x1_lag) > test(lag(x1 ~ id + period_date, -1, data = base), base$x1_lead) > > cat("done.\nEstimations...") done. Estimations...> > # > # Estimations > # > > # Poisson > > for(depvar in c("y", "y_na", "y_0")){ + for(p in c("period", "period_txt", "period_date")){ + + base$per = base[[p]] + + cat(".") + + base$y_dep = base[[depvar]] + pdat = panel(base, ~ id + period) + + if(depvar == "y_0"){ + estfun = fepois + } else { + estfun = feols + } + + est_raw = estfun(y_dep ~ x1 + x1_lag + x1_lead, base) + est = estfun(y_dep ~ x1 + l(x1) + f(x1), base, panel.id = "id,per") + est_pdat = estfun(y_dep ~ x1 + l(x1, 1) + f(x1, 1), pdat) + test(coef(est_raw), coef(est)) + test(coef(est_raw), coef(est_pdat)) + + # Now diff + est_raw = estfun(y_dep ~ x1 + x1_diff, base) + est = estfun(y_dep ~ x1 + d(x1), base, panel.id = "id,per") + est_pdat = estfun(y_dep ~ x1 + d(x1, 1), pdat) + test(coef(est_raw), coef(est)) + test(coef(est_raw), coef(est_pdat)) + + # Now we just check that calls to l/f works without checking coefs + + est = estfun(y_dep ~ x1 + l(x1) + f(x1), base, panel.id = "id,per") + est = estfun(y_dep ~ l(x1, -1:1) + f(x1, 2), base, panel.id = c("id", "per")) + est = estfun(y_dep ~ l(x1, -1:1, fill = 1), base, panel.id = ~ id + per) + if(depvar == "y") test(est$nobs, n) + est = estfun(f(y_dep) ~ f(x1, -1:1), base, panel.id = ~ id + per) + } + } .........> > cat("done.\n\n") done. > > # > # Data table > # > > cat("data.table...") data.table...> # We just check there is no bug (consistency should be OK) > > library(data.table) > > base_dt = data.table(id = c("A", "A", "B", "B"), + time = c(1, 2, 1, 3), + x = c(5, 6, 7, 8)) > > base_dt = panel(base_dt, ~id + time) > > base_dt[, x_l := l(x)] > test(base_dt$x_l, c(NA, 5, NA, NA)) > > lag_creator = function(dt) { + dt2 = panel(dt, ~id + time) + dt2[, x_l := l(x)] + return(dt2) + } > > base_bis = lag_creator(base_dt) > > base_bis[, x_d := d(x)] > > cat("done.\n\n") done. > > # > # Panel > # > > # We ensure we get the right SEs whether we use the panel() or the panel.id method > data(base_did) > > # Setting a data set as a panel... > pdat = panel(base_did, ~id+period) > pdat$fe = sample(15, nrow(pdat), replace = TRUE) > > base_panel = unpanel(pdat) > > est_pdat = feols(y ~ x1 | fe, pdat) > est_panel = feols(y ~ x1 | fe, base_panel, panel.id = ~id+period) > > test(attr(vcov(est_pdat, attr = TRUE), "type"), + attr(vcov(est_panel, attr = TRUE), "type")) > > #### > #### ... subset #### > #### > > chunk("SUBSET") SUBSET > > set.seed(5) > base = iris > names(base) = c("y", "x1", "x2", "x3", "species") > base$fe_bis = sample(letters, 150, TRUE) > base$x4 = rnorm(150) > base$x1[sample(150, 5)] = NA > > fml = y ~ x1 + x2 > > # Errors > test(feols(fml, base, subset = ~species), "err") > test(feols(fml, base, subset = -1:15), "err") > test(feols(fml, base, subset = integer(0)), "err") > test(feols(fml, base, subset = c(TRUE, TRUE, FALSE)), "err") > > # Valid use > for(id_fun in 1:6){ + estfun = switch(as.character(id_fun), + "1" = feols, + "2" = feglm, + "3" = fepois, + "4" = femlm, + "5" = fenegbin, + "6" = feNmlm) + + for(id_fe in 1:5){ + + cat(".") + + fml = switch(as.character(id_fe), + "1" = y ~ x1 + x2, + "2" = y ~ x1 + x2 | species, + "3" = y ~ x1 + x2 | fe_bis, + "4" = y ~ x1 + x2 + i(fe_bis), + "5" = y ~ x1 + x2 | fe_bis[x3]) + + if(id_fe == 5 && id_fun %in% 4:6) next + + if(id_fun == 6){ + res_sub_a = estfun(fml, base, subset = ~species == "setosa", NL.fml = ~ a*x4, NL.start = 0) + res_sub_b = estfun(fml, base, subset = base$species == "setosa", NL.fml = ~ a*x4, NL.start = 0) + res_sub_c = estfun(fml, base, subset = which(base$species == "setosa"), NL.fml = ~ a*x4, NL.start = 0) + res = estfun(fml, base[base$species == "setosa", ], NL.fml = ~ a*x4, NL.start = 0) + } else { + res_sub_a = estfun(fml, base, subset = ~species == "setosa") + res_sub_b = estfun(fml, base, subset = base$species == "setosa") + res_sub_c = estfun(fml, base, subset = which(base$species == "setosa")) + res = estfun(fml, base[base$species == "setosa", ]) + } + + test(coef(res_sub_a), coef(res)) + test(coef(res_sub_b), coef(res)) + test(coef(res_sub_c), coef(res)) + test(se(res_sub_c, cluster = "fe_bis"), se(res, cluster = "fe_bis")) + } + cat("|") + } .....|.....|.....|.....|.....|.....|> cat("\n") > > > #### > #### ... split #### > #### > > chunk("split") SPLIT > > base = setNames(iris, c("y", "x1", "x2", "x3", "species")) > > # simple: formula > est = feols(y ~ x.[1:3], base, split = ~species %keep% "@^v") > test(length(est), 2) > > est = feols(y ~ x.[1:3], base, fsplit = ~species %keep% c("set", "vers")) > test(length(est), 3) > > est = feols(y ~ x.[1:3], base, split = ~species %drop% "set") > test(length(est), 2) > > # simple: vector > est = feols(y ~ x.[1:3], base, split = base$species %keep% "@^v") > test(length(est), 2) > > est = feols(y ~ x.[1:3], base, split = base$species %keep% c("set", "vers")) > test(length(est), 2) > > est = feols(y ~ x.[1:3], base, split = base$species %drop% "set") > test(length(est), 2) > > # with bin > est = feols(y ~ x.[1:2], base, + split = ~bin(x3, c("cut::5", "saint emilion", "pessac leognan", + "margaux", "saint julien", "entre deux mers")) %keep% c("saint e", "pe")) > test(length(est), 2) > > est = feols(y ~ x.[1:2], base, + split = ~bin(x3, c("cut::5", "saint emilion", "pessac leognan", NA)) %drop% "@\\d") > test(length(est), 2) > > # with argument > est = feols(y ~ x.[1:3], base, split = ~species, split.keep = "@^v") > test(length(est), 2) > > est = feols(y ~ x.[1:3], base, fsplit = ~species, split.keep = c("set", "vers")) > test(length(est), 3) > > est = feols(y ~ x.[1:3], base, split = ~species, split.drop = "set") > test(length(est), 2) > > > #### > #### ... Multiple estimations #### > #### > > chunk("Multiple") MULTIPLE > > set.seed(2) > base = iris > names(base) = c("y1", "x1", "x2", "x3", "species") > base$y2 = 10 + rnorm(150) + 0.5 * base$x1 > base$x4 = rnorm(150) + 0.5 * base$y1 > base$fe2 = rep(letters[1:15], 10) > base$fe2[50:51] = NA > base$y2[base$fe2 == "a" & !is.na(base$fe2)] = 0 > base$x2[1:5] = NA > base$x3[6] = NA > base$x5 = rnorm(150) > base$x6 = rnorm(150) + base$y1 * 0.25 > base$fe3 = rep(letters[1:10], 15) > > > for(id_fun in 1:5){ + estfun = switch(as.character(id_fun), + "1" = feols, + "2" = feglm, + "3" = fepois, + "4" = femlm, + "5" = feNmlm) + + # Following weird bug ASAN on CRAN I cannot replicate, check 4/5 not performed on non Windows + if(Sys.info()["sysname"] != "Windows"){ + if(id_fun %in% 4:5) next + } + + + est_multi = estfun(c(y1, y2) ~ x1 + sw(x2, x3), base, split = ~species) + + k = 1 + for(s in c("setosa", "versicolor", "virginica")){ + for(lhs in c("y1", "y2")){ + for(rhs in c("x2", "x3")){ + res = estfun(.[lhs] ~ x1 + .[rhs], base[base$species == s, ], notes = FALSE) + + test(coef(est_multi[[k]]), coef(res)) + test(se(est_multi[[k]], cluster = "fe3"), se(res, cluster = "fe3")) + k = k + 1 + } + } + } + + cat("__") + + est_multi = estfun(c(y1, y2) ~ x1 + csw0(x2, x3) + x4 | species + fe2, base, fsplit = ~species) + k = 1 + all_rhs = c("", "x2", "x3") + for(s in c("all", "setosa", "versicolor", "virginica")){ + for(lhs in c("y1", "y2")){ + for(n_rhs in 1:3){ + if(s == "all"){ + res = estfun(xpd(..lhs ~ x1 + ..rhs + x4 | species + fe2, ..lhs = lhs, ..rhs = all_rhs[1:n_rhs]), base, notes = FALSE) + } else { + res = estfun(xpd(..lhs ~ x1 + ..rhs + x4 | species + fe2, ..lhs = lhs, ..rhs = all_rhs[1:n_rhs]), base[base$species == s, ], notes = FALSE) + } + + vname = names(coef(res)) + test(coef(est_multi[[k]])[vname], coef(res), "~" , 1e-6) + test(se(est_multi[[k]], cluster = "fe3")[vname], se(res, cluster = "fe3"), "~" , 1e-6) + k = k + 1 + } + } + } + + cat("|") + } Flavor: r-oldrel-windows-x86_64