The Bayesian Federated Inference ('BFI') method combines inference results obtained from local data sets in the separate centers. In this version of the package, the 'BFI' methodology is programmed for linear, logistic and survival regression models. For GLMs, see Jonker, Pazira and Coolen (2024) <doi:10.1002/sim.10072>; for survival models, see Pazira, Massa, Weijers, Coolen and Jonker (2024) <doi:10.48550/arXiv.2404.17464>; and for heterogeneous populations, see Jonker, Pazira and Coolen (2024) <doi:10.48550/arXiv.2402.02898>.
Version: | 2.0.1 |
Depends: | R (≥ 2.10) |
Imports: | stats |
Suggests: | knitr, rmarkdown, roxygen2, devtools, spelling, testthat (≥ 3.0.0) |
Published: | 2024-07-04 |
DOI: | 10.32614/CRAN.package.BFI |
Author: | Hassan Pazira [aut, cre], Emanuele Massa [aut], Marianne A. Jonker [aut] |
Maintainer: | Hassan Pazira <hassan.pazira at radboudumc.nl> |
License: | MIT + file LICENSE |
URL: | https://hassanpazira.github.io/BFI/ |
NeedsCompilation: | no |
Language: | en-US |
Citation: | BFI citation info |
Materials: | README NEWS |
CRAN checks: | BFI results |
Reference manual: | BFI.pdf |
Vignettes: |
An Introduction to BFI Calling BFI from Python Using BFI in SAS |
Package source: | BFI_2.0.1.tar.gz |
Windows binaries: | r-devel: BFI_2.0.1.zip, r-release: BFI_2.0.1.zip, r-oldrel: BFI_2.0.1.zip |
macOS binaries: | r-release (arm64): BFI_2.0.1.tgz, r-oldrel (arm64): BFI_2.0.1.tgz, r-release (x86_64): BFI_2.0.1.tgz, r-oldrel (x86_64): BFI_2.0.1.tgz |
Old sources: | BFI archive |
Please use the canonical form https://CRAN.R-project.org/package=BFI to link to this page.