BKTR: Bayesian Kernelized Tensor Regression
Facilitates scalable spatiotemporally varying coefficient
modelling with Bayesian kernelized tensor regression.
The important features of this package are:
(a) Enabling local temporal and spatial modeling of the relationship between
the response variable and covariates.
(b) Implementing the model described by Lei et al. (2023) <doi:10.48550/arXiv.2109.00046>.
(c) Using a Bayesian Markov Chain Monte Carlo (MCMC) algorithm to sample from the posterior
distribution of the model parameters.
(d) Employing a tensor decomposition to reduce the number of estimated parameters.
(e) Accelerating tensor operations and enabling graphics processing unit (GPU) acceleration
with the 'torch' package.
Version: |
0.2.0 |
Depends: |
R (≥ 4.0.0) |
Imports: |
torch (≥ 0.13.0), R6, R6P, ggplot2, ggmap, data.table |
Suggests: |
knitr, rmarkdown, R.rsp |
Published: |
2024-08-18 |
DOI: |
10.32614/CRAN.package.BKTR |
Author: |
Julien Lanthier
[aut, cre, cph],
Mengying Lei
[aut],
Aurélie Labbe
[aut],
Lijun Sun [aut] |
Maintainer: |
Julien Lanthier <julien.lanthier at hec.ca> |
BugReports: |
https://github.com/julien-hec/BKTR/issues |
License: |
MIT + file LICENSE |
NeedsCompilation: |
no |
Materials: |
README NEWS |
CRAN checks: |
BKTR results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=BKTR
to link to this page.