BranchGLM: Efficient Best Subset Selection for GLMs via Branch and Bound Algorithms

Performs efficient and scalable glm best subset selection using a novel implementation of a branch and bound algorithm. To speed up the model fitting process, a range of optimization methods are implemented in 'RcppArmadillo'. Parallel computation is available using 'OpenMP'.

Version: 3.0.1
Depends: R (≥ 3.3.0)
Imports: Rcpp (≥ 1.0.7), methods, stats, graphics
LinkingTo: Rcpp, RcppArmadillo, BH
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2024-09-28
DOI: 10.32614/CRAN.package.BranchGLM
Author: Jacob Seedorff [aut, cre]
Maintainer: Jacob Seedorff <jacob-seedorff at uiowa.edu>
BugReports: https://github.com/JacobSeedorff21/BranchGLM/issues
License: Apache License (≥ 2)
URL: https://github.com/JacobSeedorff21/BranchGLM
NeedsCompilation: yes
CRAN checks: BranchGLM results

Documentation:

Reference manual: BranchGLM.pdf
Vignettes: BranchGLM Vignette (source, R code)
Variable Importance Vignette (source, R code)
VariableSelection Vignette (source, R code)

Downloads:

Package source: BranchGLM_3.0.1.tar.gz
Windows binaries: r-devel: BranchGLM_3.0.1.zip, r-release: BranchGLM_3.0.1.zip, r-oldrel: BranchGLM_3.0.1.zip
macOS binaries: r-release (arm64): BranchGLM_3.0.1.tgz, r-oldrel (arm64): BranchGLM_3.0.1.tgz, r-release (x86_64): BranchGLM_3.0.1.tgz, r-oldrel (x86_64): BranchGLM_3.0.1.tgz
Old sources: BranchGLM archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=BranchGLM to link to this page.