MVSKmod: Matrix-Variate Skew Linear Regression Models

An implementation of the alternating expectation conditional maximization (AECM) algorithm for matrix-variate variance gamma (MVVG) and normal-inverse Gaussian (MVNIG) linear models. These models are designed for settings of multivariate analysis with clustered non-uniform observations and correlated responses. The package includes fitting and prediction functions for both models, and an example dataset from a periodontal on Gullah-speaking African Americans, with responses in gaad_res, and covariates in gaad_cov. For more details on the matrix-variate distributions used, see Gallaugher & McNicholas (2019) <doi:10.1016/j.spl.2018.08.012>.

Version: 0.1.0
Depends: R (≥ 3.5.0)
Imports: Bessel, clusterGeneration, DistributionUtils, matlib, maxLik, truncnorm, pracma
Published: 2025-05-09
Author: Samuel Soon [aut, cre], Dipankar Bandyopadhyay [aut], Qingyang Liu [aut]
Maintainer: Samuel Soon <samksoon2 at gmail.com>
BugReports: https://github.com/soonsk-vcu/MVSKmod/issues
License: MIT + file LICENSE
URL: https://github.com/soonsk-vcu/MVSKmod
NeedsCompilation: no
Materials: README
CRAN checks: MVSKmod results

Documentation:

Reference manual: MVSKmod.pdf

Downloads:

Package source: MVSKmod_0.1.0.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=MVSKmod to link to this page.