RaJIVE: Robust Angle Based Joint and Individual Variation Explained

A robust alternative to the aJIVE (angle based Joint and Individual Variation Explained) method (Feng et al 2018: <doi:10.1016/j.jmva.2018.03.008>) for the estimation of joint and individual components in the presence of outliers in multi-source data. It decomposes the multi-source data into joint, individual and residual (noise) contributions. The decomposition is robust to outliers and noise in the data. The method is illustrated in Ponzi et al (2021) <doi:10.48550/arXiv.2101.09110>.

Version: 1.0
Depends: R (≥ 3.1.0)
Imports: ggplot2, doParallel, foreach
Suggests: knitr, rmarkdown, testthat (≥ 2.1.0), cowplot, reshape2, dplyr
Published: 2021-02-04
DOI: 10.32614/CRAN.package.RaJIVE
Author: Erica Ponzi [aut, cre], Abhik Ghosh [aut]
Maintainer: Erica Ponzi <erica.ponzi at medisin.uio.no>
License: MIT + file LICENSE
NeedsCompilation: no
Materials: README
CRAN checks: RaJIVE results

Documentation:

Reference manual: RaJIVE.pdf

Downloads:

Package source: RaJIVE_1.0.tar.gz
Windows binaries: r-devel: RaJIVE_1.0.zip, r-release: RaJIVE_1.0.zip, r-oldrel: RaJIVE_1.0.zip
macOS binaries: r-release (arm64): RaJIVE_1.0.tgz, r-oldrel (arm64): RaJIVE_1.0.tgz, r-release (x86_64): RaJIVE_1.0.tgz, r-oldrel (x86_64): RaJIVE_1.0.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=RaJIVE to link to this page.