bmgarch
estimates Bayesian multivariate generalized
autoregressive conditional heteroskedasticity (MGARCH) models.
Currently, bmgarch supports a variety of MGARCH(P,Q) parameterizations
and simultaneous estimation of ARMA(1,1), VAR(1) and intercept-only
(Constant) mean structures. In increasing order of complexity:
bmgarch
is available on CRAN and can be installed
with:
install.packages('bmgarch')
Linux users may need to install libv8
prior to
installing bmgarch
. For example, in Ubuntu, run
sudo apt install libv8-dev
before installing the package
from CRAN or github. For those who’s distro installs
libnode-dev
instead of libv8-dev
, run
install.packages("V8")
in R prior to installing
bmgarch
(during installationrstan
looks
explicitly for V8).
The development version can be installed from GitHub with:
devtools::install_github("ph-rast/bmgarch")
Please add at least one of the following citations when referring to to this package:
Rast, P., & Martin, S. R. (2021). bmgarch: An R-Package for Bayesian Multivariate GARCH models. Journal of Open Source Software, 6, 3452 - 4354. doi: https://joss.theoj.org/papers/10.21105/joss.03452
Rast, P., Martin, S. R., Liu, S., & Williams, D. R. (in press). A New Frontier for Studying Within-Person Variability: Bayesian Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. Psychological Methods. https://doi.apa.org/10.1037/met0000357; Preprint-doi: https://psyarxiv.com/j57pk
We present two examples, one with behavioral data and one with stocks from three major Japanese automakers.
In this example, we use the pdBEKK(1,1) model for the variances, and an intercept-only model for the means.
library(bmgarch)
data(panas)
head(panas)
#> Pos Neg
#> 1 -2.193 -2.419
#> 2 1.567 -0.360
#> 3 -0.124 -1.202
#> 4 0.020 -1.311
#> 5 -0.150 2.004
#> 6 3.877 1.008
## Fit pdBEKK(1, 1) with ARMA(1,1) on the mean structure.
fit <- bmgarch(panas,
parameterization = "pdBEKK",
iterations = 1000,
P = 1, Q = 1,
distribution = "Student_t",
meanstructure = "arma")
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'pdBEKKMGARCH' NOW.
#>
#> COMPILING MODEL 'pdBEKKMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'pdBEKKMGARCH' NOW.
summary(fit)
#> Model: pdBEKK-MGARCH
#> Basic Specification: H_t = D_t R D_t
#> H_t = C + A'[y_(t-1)*y'_(t-1)]A + B'H_(t-1)B
#>
#> Sampling Algorithm: MCMC
#> Distribution: Student_t
#> ---
#> Iterations: 1000
#> Chains: 4
#> Date: Wed Nov 17 10:42:49 2021
#> Elapsed time (min): 19.21
#>
#> ---
#> Constant correlation, R (diag[C]*R*diag[C]):
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> R_Ng-Ps -0.06 0.38 -0.01 -0.89 0.85 56.84 1.05
#>
#>
#> Constant variances (diag[C]):
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> var_Ps 1.02 0.73 1.26 0.02 2.92 12.69 1.15
#> var_Ng 1.17 0.33 1.25 0.35 1.83 31.01 1.07
#>
#>
#> MGARCH(1,1) estimates for A:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> A_Ps-Ps 0.46 0.18 0.42 0.20 0.75 2.27 2.83
#> A_Ng-Ps 0.05 0.06 0.06 -0.06 0.18 9.52 1.17
#> A_Ps-Ng 0.10 0.11 0.11 -0.17 0.27 7.81 1.19
#> A_Ng-Ng 0.39 0.12 0.39 0.17 0.58 4.00 1.42
#>
#>
#> MGARCH(1,1) estimates for B:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> B_Ps-Ps 0.65 0.22 0.71 0.14 0.93 5.27 1.32
#> B_Ng-Ps -0.05 0.13 -0.03 -0.33 0.24 180.68 1.03
#> B_Ps-Ng 0.21 0.29 0.27 -0.42 0.93 91.08 1.06
#> B_Ng-Ng 0.49 0.20 0.61 0.04 0.70 4.05 1.43
#>
#>
#> ARMA(1,1) estimates on the location:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> (Intercept)_Pos 0.03 0.13 0.04 -0.33 0.21 7.78 1.19
#> (Intercept)_Neg 0.07 0.08 0.07 -0.10 0.29 788.15 1.01
#> Phi_Pos-Pos 0.13 0.34 0.25 -0.77 0.57 5.76 1.27
#> Phi_Pos-Neg -0.38 0.42 -0.64 -0.78 0.70 4.69 1.35
#> Phi_Neg-Pos -0.21 0.26 -0.16 -0.68 0.43 15.96 1.12
#> Phi_Neg-Neg 0.26 0.39 0.34 -0.73 0.74 6.16 1.26
#> Theta_Pos-Pos -0.29 0.41 -0.42 -0.70 0.75 3.90 1.46
#> Theta_Pos-Neg 0.34 0.46 0.63 -0.81 0.71 3.79 1.47
#> Theta_Neg-Pos 0.24 0.28 0.17 -0.43 0.70 9.21 1.18
#> Theta_Neg-Neg -0.35 0.44 -0.56 -0.77 0.72 4.49 1.38
#>
#>
#> Df constant student_t (nu):
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> 51.82 25.68 45.69 16.84 99.71 4.13 1.41
#>
#>
#> Log density posterior estimate:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> -796.43 7.38 -793.28 -811.48 -788.15 2.54 2.21
fit.fc <- forecast(fit, ahead = 5)
fit.fc
#> ---
#> [Mean] Forecast for 5 ahead:
#>
#> Pos :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 201 -1.16 3.25 -1.15 -7.85 4.89 266.84 1.00
#> 202 -0.59 3.09 -0.63 -6.50 5.27 1082.14 1.00
#> 203 -0.44 2.95 -0.50 -6.36 5.49 1533.34 1.00
#> 204 -0.47 2.77 -0.46 -5.84 4.65 1728.88 1.00
#> 205 -0.36 2.83 -0.37 -5.69 5.02 2004.18 1.01
#> Neg :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 201 0.62 1.51 0.64 -2.20 3.48 121.81 1.01
#> 202 0.60 1.59 0.61 -2.62 3.66 209.94 1.01
#> 203 0.52 1.64 0.52 -2.80 3.74 836.84 1.00
#> 204 0.44 1.70 0.42 -2.88 3.74 1839.11 1.00
#> 205 0.36 1.67 0.36 -2.86 3.73 1747.95 1.00
#> ---
#> [Variance] Forecast for 5 ahead:
#>
#> Pos :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 201 9.07 2.59 9.12 4.31 13.45 13.62 1.10
#> 202 8.21 6.29 6.73 3.52 23.95 442.56 1.03
#> 203 7.52 8.46 5.81 2.57 22.11 1187.97 1.01
#> 204 7.17 8.83 5.15 2.33 24.36 1392.74 1.01
#> 205 7.01 14.12 4.79 2.26 24.62 1908.12 1.01
#> Neg :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 201 1.91 0.33 1.89 1.43 2.61 13.10 1.15
#> 202 2.21 0.76 2.13 1.47 3.96 1598.27 1.00
#> 203 2.33 0.83 2.16 1.51 4.69 2124.16 1.00
#> 204 2.44 1.32 2.18 1.48 5.35 1741.05 1.01
#> 205 2.53 2.73 2.20 1.47 5.68 1991.43 1.00
#> [Correlation] Forecast for 5 ahead:
#>
#> Neg_Pos :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 201 -0.05 0.14 -0.04 -0.35 0.22 347.38 1.00
#> 202 -0.02 0.23 -0.04 -0.43 0.56 52.30 1.02
#> 203 0.01 0.24 -0.02 -0.42 0.63 36.96 1.03
#> 204 0.03 0.25 0.00 -0.42 0.67 28.53 1.04
#> 205 0.04 0.25 0.01 -0.40 0.69 24.37 1.05
plot(fit.fc, askNewPage = FALSE, type = "var")
plot(fit.fc, askNewPage = FALSE, type = "cor")
Here we use the first 100 days (we only base our analyses on 100 days to reduce wait time – this is not meant to be a serious analysis) of Stata’s stocks data on daily returns of three Japanese automakers, Toyota, Nissan, and Honda.
library(bmgarch)
data(stocks)
head(stocks)
#> date t toyota nissan honda
#> 1 2003-01-02 1 0.015167475 0.029470444 0.031610250
#> 2 2003-01-03 2 0.004820108 0.008173466 0.002679110
#> 3 2003-01-06 3 0.019958735 0.013064146 -0.001606464
#> 4 2003-01-07 4 -0.013322592 -0.007444382 -0.011317968
#> 5 2003-01-08 5 -0.027001143 -0.018856525 -0.016944885
#> 6 2003-01-09 6 0.011634588 0.016986847 0.013687611
Ease computation by first standardizing the time series
stocks.z <- scale(stocks[,c("toyota", "nissan", "honda")])
head(stocks.z )
#> toyota nissan honda
#> 1 0.8151655 1.3417896 1.52836901
#> 2 0.2517820 0.3687089 0.11213515
#> 3 1.0760354 0.5921691 -0.09765177
#> 4 -0.7360344 -0.3448866 -0.57304819
#> 5 -1.4807910 -0.8663191 -0.84849638
#> 6 0.6228102 0.7714013 0.65102202
# Fit CCC(1, 1) with constant on the mean structure.
fit1 <- bmgarch(stocks.z[1:100, c("toyota", "nissan", "honda")],
parameterization = "CCC",
iterations = 1000,
P = 1, Q = 1,
distribution = "Student_t",
meanstructure = "constant")
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#>
#> COMPILING MODEL 'CCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
summary( fit1 )
#> Model: CCC-MGARCH
#> Basic Specification: H_t = D_t R D_t
#> diag(D_t) = sqrt(h_[ii,t]) = c_h + a_h*y^2_[t-1] + b_h*h_[ii, t-1
#>
#> Sampling Algorithm: MCMC
#> Distribution: Student_t
#> ---
#> Iterations: 1000
#> Chains: 4
#> Date: Wed Nov 17 10:44:01 2021
#> Elapsed time (min): 0.9
#>
#> GARCH(1,1) estimates for conditional variance:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> a_h_1,ty 0.10 0.09 0.08 0.00 0.35 1888.57 1
#> a_h_1,ns 0.08 0.07 0.06 0.00 0.26 2189.46 1
#> a_h_1,hn 0.10 0.08 0.09 0.00 0.29 2391.91 1
#> b_h_1,ty 0.45 0.18 0.46 0.10 0.77 1271.23 1
#> b_h_1,ns 0.37 0.19 0.35 0.06 0.76 1155.06 1
#> b_h_1,hn 0.39 0.18 0.38 0.09 0.75 1483.92 1
#> c_h_var_ty 0.29 0.12 0.27 0.10 0.56 1216.38 1
#> c_h_var_ns 0.36 0.13 0.36 0.11 0.63 1453.76 1
#> c_h_var_hn 0.45 0.16 0.43 0.16 0.78 1430.93 1
#>
#>
#> Constant correlation (R) coefficients:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> R_ns-ty 0.65 0.06 0.65 0.51 0.75 2407.81 1
#> R_hn-ty 0.73 0.05 0.74 0.63 0.82 2453.44 1
#> R_hn-ns 0.64 0.07 0.65 0.50 0.75 2556.38 1
#>
#>
#> Intercept estimates on the location:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> (Intercept)_toyota -0.09 0.08 -0.09 -0.24 0.07 1361.84 1
#> (Intercept)_nissan -0.01 0.08 0.00 -0.16 0.15 1623.28 1
#> (Intercept)_honda -0.02 0.09 -0.02 -0.20 0.17 1510.14 1
#>
#>
#> Df constant student_t (nu):
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> 32.89 24.58 25.80 7.20 98.90 2315.62 1.00
#>
#>
#> Log density posterior estimate:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> -178.38 5.17 -177.93 -189.56 -169.32 726.13 1.00
Forecast volatility 10 days ahead
fc <- forecast(fit1, ahead = 10 )
fc
#> ---
#> [Variance] Forecast for 10 ahead:
#>
#> toyota :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 101 0.54 0.11 0.53 0.34 0.78 1990.87 1
#> 102 0.58 0.16 0.56 0.35 0.91 1912.86 1
#> 103 0.61 0.22 0.58 0.36 1.06 2128.36 1
#> 104 0.63 0.23 0.59 0.36 1.13 2070.43 1
#> 105 0.64 0.24 0.60 0.37 1.15 2011.56 1
#> 106 0.65 0.30 0.60 0.37 1.27 2122.41 1
#> 107 0.66 0.49 0.61 0.37 1.33 1982.69 1
#> 108 0.67 0.33 0.61 0.38 1.40 1965.65 1
#> 109 0.67 0.34 0.61 0.38 1.36 1953.30 1
#> 110 0.67 0.29 0.62 0.39 1.36 1777.40 1
#> nissan :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 101 0.61 0.11 0.60 0.43 0.84 2199.41 1
#> 102 0.64 0.16 0.62 0.43 1.01 2165.82 1
#> 103 0.66 0.19 0.63 0.43 1.15 2258.04 1
#> 104 0.67 0.19 0.63 0.43 1.16 2218.87 1
#> 105 0.67 0.20 0.63 0.43 1.16 2160.20 1
#> 106 0.67 0.21 0.63 0.43 1.20 2097.01 1
#> 107 0.67 0.23 0.63 0.43 1.17 2093.49 1
#> 108 0.68 0.27 0.64 0.43 1.20 1662.11 1
#> 109 0.68 0.27 0.64 0.43 1.26 2134.24 1
#> 110 0.68 0.24 0.64 0.43 1.26 2095.73 1
#> honda :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 101 0.77 0.14 0.76 0.52 1.07 2113.58 1
#> 102 0.83 0.22 0.79 0.53 1.36 1926.71 1
#> 103 0.86 0.27 0.81 0.54 1.45 2023.81 1
#> 104 0.89 0.34 0.83 0.54 1.61 1781.57 1
#> 105 0.90 0.35 0.84 0.54 1.67 1921.87 1
#> 106 0.92 0.43 0.84 0.54 1.74 1773.26 1
#> 107 0.92 0.47 0.85 0.55 1.68 2081.64 1
#> 108 0.92 0.39 0.84 0.55 1.80 2181.67 1
#> 109 0.93 0.46 0.85 0.55 1.78 2044.45 1
#> 110 0.93 0.39 0.85 0.55 1.78 2023.25 1
plot(fc,askNewPage = FALSE, type = 'var' )
Here we illustrate how to obtain model weights across three models. These weights will be used to compute weighted forecasts, thus, taking into account that we do not have a single best model.
Add two additional models, one with CCC(2,2) and a DCC(1,1)
# Fit CCC(1, 1) with constant on the mean structure.
fit2 <- bmgarch(stocks.z[1:100, c("toyota", "nissan", "honda")],
parameterization = "CCC",
iterations = 1000,
P = 2, Q = 2,
distribution = "Student_t",
meanstructure = "constant")
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#>
#> COMPILING MODEL 'CCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
fit3 <- bmgarch(stocks.z[1:100, c("toyota", "nissan", "honda")],
parameterization = "DCC",
iterations = 1000,
P = 1, Q = 1,
distribution = "Student_t",
meanstructure = "arma")
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#>
#> COMPILING MODEL 'DCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
The DCC(1,1) model also incorporates an ARMA(1,1) meanstructure. The output will have the according information:
summary( fit3 )
#> Model: DCC-MGARCH
#> Basic Specification: H_t = D_t R D_t
#> diag(D_t) = sqrt(h_ii,t) = c_h + a_h*y^2_[t-1] + b_h*h_[ii,t-1]
#> R_t = Q^[-1]_t Q_t Q^[-1]_t = ( 1 - a_q - b_q)S + a_q(u_[t-1]u'_[t-1]) + b_q(Q_[t-1])
#>
#> Sampling Algorithm: MCMC
#> Distribution: Student_t
#> ---
#> Iterations: 1000
#> Chains: 4
#> Date: Wed Nov 17 11:00:01 2021
#> Elapsed time (min): 14.73
#>
#> GARCH(1,1) estimates for conditional variance on D:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> a_h_1,ty 0.17 0.14 0.14 0.01 0.52 1056.07 1.01
#> a_h_1,ns 0.10 0.09 0.08 0.00 0.34 1189.77 1.00
#> a_h_1,hn 0.13 0.11 0.11 0.01 0.41 1284.85 1.00
#> b_h_1,ty 0.44 0.17 0.45 0.11 0.74 906.44 1.00
#> b_h_1,ns 0.41 0.20 0.39 0.08 0.82 692.83 1.00
#> b_h_1,hn 0.46 0.19 0.47 0.10 0.83 885.63 1.00
#> c_h_var_ty 0.28 0.12 0.26 0.10 0.54 935.88 1.00
#> c_h_var_ns 0.32 0.13 0.32 0.09 0.58 719.80 1.00
#> c_h_var_hn 0.38 0.16 0.36 0.11 0.72 813.64 1.00
#>
#>
#> GARCH(1,1) estimates for conditional variance on Q:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> a_q 0.21 0.10 0.20 0.04 0.44 1040.20 1.01
#> b_q 0.23 0.15 0.21 0.01 0.57 927.87 1.01
#>
#>
#> Unconditional correlation 'S' in Q:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> S_ns-ty 0.60 0.09 0.61 0.40 0.75 1063.10 1.00
#> S_hn-ty 0.73 0.07 0.74 0.58 0.84 951.12 1.01
#> S_hn-ns 0.63 0.08 0.63 0.45 0.77 1496.51 1.00
#>
#>
#> ARMA(1,1) estimates on the location:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> (Intercept)_toyota -0.08 0.09 -0.08 -0.26 0.08 792.13 1.00
#> (Intercept)_nissan 0.01 0.10 0.01 -0.20 0.19 663.45 1.00
#> (Intercept)_honda -0.03 0.12 -0.02 -0.27 0.20 644.99 1.00
#> Phi_toyota-toyota 0.01 0.36 0.02 -0.69 0.68 528.60 1.02
#> Phi_toyota-nissan 0.02 0.39 0.03 -0.70 0.78 609.47 1.01
#> Phi_toyota-honda 0.15 0.36 0.16 -0.57 0.87 343.72 1.01
#> Phi_nissan-toyota 0.27 0.41 0.32 -0.66 0.91 399.28 1.01
#> Phi_nissan-nissan -0.15 0.38 -0.17 -0.82 0.64 712.58 1.01
#> Phi_nissan-honda 0.13 0.41 0.16 -0.76 0.85 446.08 1.01
#> Phi_honda-toyota -0.27 0.40 -0.29 -0.94 0.53 558.23 1.01
#> Phi_honda-nissan 0.14 0.43 0.15 -0.70 0.91 623.26 1.00
#> Phi_honda-honda -0.09 0.35 -0.07 -0.76 0.61 665.98 1.00
#> Theta_toyota-toyota -0.11 0.39 -0.14 -0.83 0.69 416.69 1.02
#> Theta_toyota-nissan 0.12 0.39 0.13 -0.65 0.82 578.37 1.01
#> Theta_toyota-honda -0.13 0.36 -0.14 -0.82 0.57 370.93 1.01
#> Theta_nissan-toyota -0.27 0.42 -0.34 -0.92 0.71 384.55 1.01
#> Theta_nissan-nissan 0.16 0.36 0.18 -0.60 0.80 715.11 1.01
#> Theta_nissan-honda -0.18 0.40 -0.18 -0.93 0.65 435.38 1.01
#> Theta_honda-toyota 0.00 0.40 0.00 -0.78 0.73 701.92 1.00
#> Theta_honda-nissan -0.02 0.45 -0.03 -0.85 0.86 584.20 1.00
#> Theta_honda-honda 0.21 0.39 0.21 -0.57 0.91 675.18 1.00
#>
#>
#> Df constant student_t (nu):
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> 44.50 28.32 37.82 9.43 112.97 1642.00 1.00
#>
#>
#> Log density posterior estimate:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> -177.52 5.99 -177.18 -190.23 -167.03 502.29 1.00
fc <- forecast(fit3, ahead = 10)
plot( fc,askNewPage = FALSE, type = 'mean' )
Obtain model weights with either the stacking or the pseudo BMA
method. These methods are inherited from the loo
package.
First, gather models to a bmgarch_list
.
## use bmgarch_list function to collect bmgarch objects
modfits <- bmgarch_list(fit1, fit2, fit3)
Compute model weights with the stacking method (default) and the
approximate (default) leave-future-out cross validation (LFO CV).
L
defines the minimal length of the time series before we
start engaging in cross-validation. Eg., for a time series with length
100, L = 50
reserves values 51–100 as the cross-validation
sample. Note that the standard is to use the approximate
backward
method to CV as it results in fewest refits. Exact
CV is also available with exact
but not encouraged as it
results in refitting all CV models.
mw <- model_weights(modfits, L = 50, method = 'stacking')
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#>
#> COMPILING MODEL 'CCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#>
#> COMPILING MODEL 'CCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#>
#> COMPILING MODEL 'CCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#>
#> COMPILING MODEL 'CCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#>
#> COMPILING MODEL 'CCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#> Using threshold 0.6 , model was refit 5 times, at observations 84 77 71 63 51
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#>
#> COMPILING MODEL 'CCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#>
#> COMPILING MODEL 'CCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#>
#> COMPILING MODEL 'CCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
#> Using threshold 0.6 , model was refit 3 times, at observations 73 65 61
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#>
#> COMPILING MODEL 'DCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#>
#> COMPILING MODEL 'DCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#>
#> COMPILING MODEL 'DCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#>
#> COMPILING MODEL 'DCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#>
#> COMPILING MODEL 'DCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#>
#> COMPILING MODEL 'DCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#>
#> COMPILING MODEL 'DCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#>
#> COMPILING MODEL 'DCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'DCCMGARCH' NOW.
#>
#> COMPILING MODEL 'DCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'DCCMGARCH' NOW.
#> Using threshold 0.6 , model was refit 9 times, at observations 87 84 79 75 74 72 63 60 51
## Return model weights:
mw
#> Method: stacking
#> ------
#> weight
#> model1 0.219
#> model2 0.781
#> model3 0.000
Use model weights to obtain weighted forecasts. Here we will forecast 5 days ahead.
w_fc <- forecast(modfits, ahead = 5, weights = mw )
w_fc
#> ---
#> LFO-weighted forecasts across 3 models.
#> ---
#> [Mean] Forecast for 5 ahead:
#>
#> toyota :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 101 -0.08 0.62 -0.08 -1.29 1.13 NA NA
#> 102 -0.10 0.62 -0.09 -1.40 1.10 NA NA
#> 103 -0.09 0.66 -0.10 -1.36 1.23 NA NA
#> 104 -0.12 0.69 -0.11 -1.56 1.18 NA NA
#> 105 -0.10 0.68 -0.11 -1.49 1.20 NA NA
#> nissan :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 101 0.03 0.68 0.04 -1.33 1.38 NA NA
#> 102 0.00 0.67 0.01 -1.32 1.34 NA NA
#> 103 -0.01 0.70 0.00 -1.34 1.38 NA NA
#> 104 -0.03 0.72 -0.02 -1.42 1.39 NA NA
#> 105 -0.04 0.72 -0.04 -1.47 1.32 NA NA
#> honda :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 101 -0.02 0.75 0.00 -1.51 1.41 NA NA
#> 102 -0.05 0.76 -0.04 -1.59 1.44 NA NA
#> 103 -0.02 0.81 -0.01 -1.67 1.51 NA NA
#> 104 -0.06 0.83 -0.05 -1.70 1.56 NA NA
#> 105 -0.05 0.83 -0.04 -1.71 1.58 NA NA
#> ---
#> [Variance] Forecast for 5 ahead:
#>
#> toyota :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 101 0.53 0.09 0.52 0.37 0.72 NA NA
#> 102 0.55 0.11 0.54 0.37 0.79 NA NA
#> 103 0.59 0.15 0.57 0.39 0.94 NA NA
#> 104 0.61 0.17 0.58 0.40 1.00 NA NA
#> 105 0.63 0.22 0.59 0.40 1.12 NA NA
#> nissan :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 101 0.63 0.09 0.62 0.47 0.83 NA NA
#> 102 0.64 0.11 0.63 0.47 0.87 NA NA
#> 103 0.66 0.13 0.64 0.47 0.94 NA NA
#> 104 0.66 0.14 0.64 0.46 0.98 NA NA
#> 105 0.68 0.16 0.66 0.47 1.01 NA NA
#> honda :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 101 0.78 0.12 0.77 0.57 1.03 NA NA
#> 102 0.79 0.15 0.78 0.55 1.14 NA NA
#> 103 0.86 0.22 0.82 0.58 1.43 NA NA
#> 104 0.88 0.27 0.83 0.57 1.48 NA NA
#> 105 0.91 0.32 0.84 0.59 1.62 NA NA
#> [Correlation] Forecast for 5 ahead:
#>
#> nissan_toyota :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 101 0.65 0.05 0.65 0.54 0.74 NA NA
#> 102 0.65 0.05 0.65 0.54 0.74 NA NA
#> 103 0.65 0.05 0.65 0.54 0.74 NA NA
#> 104 0.65 0.05 0.65 0.54 0.74 NA NA
#> 105 0.65 0.05 0.65 0.54 0.74 NA NA
#> honda_toyota :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 101 0.73 0.04 0.74 0.64 0.8 NA NA
#> 102 0.73 0.04 0.74 0.64 0.8 NA NA
#> 103 0.73 0.04 0.74 0.64 0.8 NA NA
#> 104 0.73 0.04 0.74 0.64 0.8 NA NA
#> 105 0.73 0.04 0.74 0.64 0.8 NA NA
#> honda_nissan :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 101 0.64 0.06 0.64 0.52 0.74 NA NA
#> 102 0.64 0.06 0.64 0.52 0.74 NA NA
#> 103 0.64 0.06 0.64 0.52 0.74 NA NA
#> 104 0.64 0.06 0.64 0.52 0.74 NA NA
#> 105 0.64 0.06 0.64 0.52 0.74 NA NA
Plot the weighted forecast. Save plots into a ggplot object and post-process
plt <- plot(w_fc, askNewPage = FALSE, type = 'var' )
library( patchwork )
( plt$honda + ggplot2::coord_cartesian(ylim = c(0, 2.5 ) ) ) /
( plt$toyota + ggplot2::coord_cartesian(ylim = c(0, 2.5 ) ) ) /
( plt$nissan + ggplot2::coord_cartesian(ylim = c(0, 2.5 ) ) )
#> Coordinate system already present. Adding new coordinate system, which will replace the existing one.
#> Coordinate system already present. Adding new coordinate system, which will replace the existing one.
#> Coordinate system already present. Adding new coordinate system, which will replace the existing one.
We can add predictors for the constant variance term, c or C, in the
MGARCH model with the option xC =
The predictors need to be
of the same dimension as the time-series object. For example, with three
time-series of length 100, the predictor needs to be entered as a 100 by
3 matrix as well.
To illustrate, we will add nissan
as the predictor for C
in a bivariate MGARCH:
# Fit CCC(1, 1) with constant on the mean structure.
fitx <- bmgarch(stocks.z[1:100, c("toyota", "honda")],
xC = stocks.z[1:100, c("nissan", "nissan")],
parameterization = "CCC",
iterations = 1000,
P = 2, Q = 2,
distribution = "Student_t",
meanstructure = "constant")
#>
#> CHECKING DATA AND PREPROCESSING FOR MODEL 'CCCMGARCH' NOW.
#>
#> COMPILING MODEL 'CCCMGARCH' NOW.
#>
#> STARTING SAMPLER FOR MODEL 'CCCMGARCH' NOW.
The estimates for the predictors for C are on a log scale in section
Exogenous predictor
:
summary(fitx)
#> Model: CCC-MGARCH
#> Basic Specification: H_t = D_t R D_t
#> diag(D_t) = sqrt(h_[ii,t]) = c_h + a_h*y^2_[t-1] + b_h*h_[ii, t-1
#>
#> Sampling Algorithm: MCMC
#> Distribution: Student_t
#> ---
#> Iterations: 1000
#> Chains: 4
#> Date: Wed Nov 17 12:45:10 2021
#> Elapsed time (min): 0.65
#>
#> GARCH(2,2) estimates for conditional variance:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> a_h_1,ty 0.09 0.09 0.06 0.00 0.34 1668.39 1
#> a_h_1,hn 0.08 0.08 0.05 0.00 0.29 1947.72 1
#> a_h_2,ty 0.10 0.09 0.07 0.00 0.34 1700.01 1
#> a_h_2,hn 0.12 0.12 0.08 0.00 0.46 1967.79 1
#> b_h_1,ty 0.20 0.16 0.17 0.01 0.58 2104.55 1
#> b_h_1,hn 0.18 0.15 0.14 0.01 0.57 1935.18 1
#> b_h_2,ty 0.26 0.17 0.24 0.01 0.63 1417.28 1
#> b_h_2,hn 0.19 0.17 0.15 0.01 0.62 1510.62 1
#> c_h_var_ty 0.22 0.10 0.21 0.07 0.46 1083.03 1
#> c_h_var_hn 0.40 0.16 0.39 0.12 0.73 1326.13 1
#>
#>
#> Constant correlation (R) coefficients:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> R_hn-ty 0.73 0.05 0.73 0.61 0.82 2754.98 1
#>
#>
#> Intercept estimates on the location:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> (Intercept)_toyota -0.09 0.08 -0.09 -0.24 0.07 1594.49 1
#> (Intercept)_honda -0.05 0.09 -0.04 -0.23 0.13 1562.95 1
#>
#>
#> Exogenous predictor (beta1 on log scale: c = exp( beta_0 + beta_1*x ):
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> beta0_ty -1.60 0.48 -1.57 -2.60 -0.77 1041.88 1
#> beta0_hn -1.02 0.47 -0.95 -2.11 -0.32 1062.03 1
#> beta_ty -0.20 0.38 -0.20 -0.92 0.58 1729.13 1
#> beta_hn 0.04 0.32 0.06 -0.66 0.62 1600.12 1
#>
#>
#> Df constant student_t (nu):
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> 45.76 28.88 39.73 8.86 115.81 2730.22 1.00
#>
#>
#> Log density posterior estimate:
#>
#> mean sd mdn 2.5% 97.5% n_eff Rhat
#> -130.18 4.27 -129.61 -139.72 -123.15 674.02 1.01
The predictor results in a linear model (on the log scale) with an intercept β0 and the effect of the predictor in the slope β1.
We can generate forecasts given the known values of the predictor. Note that the dimension of the predictor needs to match the number of timepoints that we predict ahead and the number of variables, 5 by 2, in this example:
fc2x <- forecast(fitx, ahead = 5, xC = stocks.z[101:105, c("nissan", "nissan")])
fc2x
#> ---
#> [Variance] Forecast for 5 ahead:
#>
#> toyota :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 101 0.46 0.11 0.45 0.28 0.69 1719.39 1
#> 102 0.47 0.16 0.45 0.24 0.82 1923.14 1
#> 103 0.51 0.23 0.48 0.23 0.96 1826.61 1
#> 104 0.54 0.29 0.50 0.25 1.07 1918.53 1
#> 105 0.57 0.27 0.52 0.27 1.18 2027.23 1
#> honda :
#>
#> period mean sd mdn 2.5% 97.5% n_eff Rhat
#> 101 0.77 0.15 0.76 0.52 1.11 1591.70 1
#> 102 0.79 0.24 0.76 0.43 1.35 1851.16 1
#> 103 0.88 0.34 0.82 0.45 1.82 1929.33 1
#> 104 0.88 0.36 0.82 0.44 1.72 1992.89 1
#> 105 0.92 0.51 0.83 0.46 2.10 2073.26 1
The package features the option to use Stan’s variational Bayes
(sampling_algorithm = "VB"
) algorithm. Currently, this
feature is lagging behind CmdStan’s version and is considered to be
experimental and mostly a placeholder for future improvements.
This work was supported by the National Institute On Aging of the National Institutes of Health under Award Number R01AG050720 to PR. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agency.