dbnlearn: Dynamic Bayesian Network Structure Learning, Parameter Learning
and Forecasting
It allows to learn the structure of univariate time series, learning parameters and forecasting.
Implements a model of Dynamic Bayesian Networks with temporal windows,
with collections of linear regressors for Gaussian nodes,
based on the introductory texts of Korb and Nicholson (2010) <doi:10.1201/b10391> and
Nagarajan, Scutari and Lèbre (2013) <doi:10.1007/978-1-4614-6446-4>.
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=dbnlearn
to link to this page.