In epiffiter
, opposite to the fit_
functions (estimate parameters from fitting models to the data), the sim_
family of functions allows to produce the DPC data given a set of parameters for a specific model. Currently, the same four population dynamic models that are fitted to the data can be simulated.
The functions use the ode()
function of the devolve
package (Soetaert,Petzoldt & Setzer 2010) to solve the differential equation form of the e epidemiological models.
First, we need to load the packages we’ll need for this tutorial.
library(epifitter)
library(magrittr)
library(ggplot2)
library(cowplot)
The sim_
functions, regardless of the model, require the same set of six arguments. By default, at least two arguments are required (the others have default values)
r
: apparent infection raten
: number of replicatesWhen n
is greater than one, replicated epidemics (e.g. replicated treatments) are produced and a level of noise (experimental error) should be set in the alpha
argument. These two arguments combined set will generate random_y
values, which will vary randomly across the defined number of replicates.
The other arguments are:
N
: epidemic duration in time unitsdt
: time (fixed) in units between two assessmentsy0
: initial inoculumalpha
: noise parameters for the replicatesLet’s simulate a curve resembling the exponential growth.
<- sim_exponential(
exp_model N = 100, # total time units
y0 = 0.01, # initial inoculum
dt = 10, # interval between assessments in time units
r = 0.045, # apparent infection rate
alpha = 0.2,# level of noise
n = 7 # number of replicates
)head(exp_model)
## replicates time y random_y
## 1 1 0 0.01000000 0.01412441
## 2 1 10 0.01568425 0.01729569
## 3 1 20 0.02459905 0.01934236
## 4 1 30 0.03858028 0.04199333
## 5 1 40 0.06050749 0.04437351
## 6 1 50 0.09489670 0.09857329
A data.frame
object is produced with four columns:
replicates
: the curve with the respective ID numbertime
: the assessment timey
: the simulated proportion of disease intensityrandom_y
: randomly simulated proportion disease intensity based on the noiseUse the ggplot2
package to build impressive graphics!
= exp_model %>%
exp_plot ggplot(aes(time, y)) +
geom_jitter(aes(time, random_y), size = 3,color = "gray", width = .1) +
geom_line(size = 1) +
theme_minimal_hgrid() +
ylim(0,1)+
labs(
title = "Exponential",
y = "Disease intensity",
x = "Time"
) exp_plot
The logic is exactly the same here.
<- sim_monomolecular(
mono_model N = 100,
y0 = 0.01,
dt = 5,
r = 0.05,
alpha = 0.2,
n = 7
)head(mono_model)
## replicates time y random_y
## 1 1 0 0.0100000 0.0100000
## 2 1 5 0.2289861 0.2767016
## 3 1 10 0.3995322 0.4386150
## 4 1 15 0.5323535 0.5588012
## 5 1 20 0.6357949 0.6653795
## 6 1 25 0.7163551 0.7211241
= mono_model %>%
mono_plot ggplot(aes(time, y)) +
geom_jitter(aes(time, random_y), size = 3, color = "gray", width = .1) +
geom_line(size = 1) +
theme_minimal_hgrid() +
labs(
title = "Monomolecular",
y = "Disease intensity",
x = "Time"
) mono_plot
<- sim_logistic(
logist_model N = 100,
y0 = 0.01,
dt = 5,
r = 0.1,
alpha = 0.2,
n = 7
)head(logist_model)
## replicates time y random_y
## 1 1 0 0.01000000 0.01000000
## 2 1 5 0.01638216 0.01517832
## 3 1 10 0.02672677 0.02864972
## 4 1 15 0.04331509 0.04849382
## 5 1 20 0.06946352 0.04272364
## 6 1 25 0.10958806 0.09518275
= logist_model %>%
logist_plot ggplot(aes(time, y)) +
geom_jitter(aes(time, random_y), size = 3,color = "gray", width = .1) +
geom_line(size = 1) +
theme_minimal_hgrid() +
labs(
title = "Logistic",
y = "Disease intensity",
x = "Time"
) logist_plot
<- sim_gompertz(
gomp_model N = 100,
y0 = 0.01,
dt = 5,
r = 0.07,
alpha = 0.2,
n = 7
)head(gomp_model)
## replicates time y random_y
## 1 1 0 0.01000000 0.01236849
## 2 1 5 0.03896283 0.05242822
## 3 1 10 0.10158896 0.09898759
## 4 1 15 0.19958740 0.15206340
## 5 1 20 0.32122825 0.31599946
## 6 1 25 0.44922018 0.49399206
= gomp_model %>%
gomp_plot ggplot(aes(time, y)) +
geom_jitter(aes(time, random_y), size = 3,color = "gray", width = .1) +
geom_line(size = 1) +
theme_minimal_hgrid() +
labs(
title = "Gompertz",
y = "Disease intensity",
x = "Time"
) gomp_plot
Use the function plot_grid()
from the cowplot
package to gather all plots into a grid
plot_grid(exp_plot,
mono_plot,
logist_plot, gomp_plot)
Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer (2010). Solving Differential Equations in R: Package deSolve. Journal of Statistical Software, 33(9), 1–25. DOI: 10.18637/jss.v033.i09