Package ‘ggsurveillance’

January 31, 2025

Title Tools and 'ggplot2' Extensions for Infectious Disease
Surveillance and Outbreak Investigation

Version 0.1.1

Description Create epicurves or epigantt charts in 'ggplot2'. Prepare
data for visualisation or other reporting for infectious disease
surveillance and outbreak investigation. Includes functions to solve
date based transformations for common reporting tasks, like
(A) seasonal date alignment for respiratory disease surveillance,
(B) date-based case binning based on specified time intervals like
isoweek, epiweek, month and more, (C) automated detection and marking
of the new year based on the date/datetime axis of the 'ggplot2'.
An introduction on how to use epicurves can be found on the US CDC website
(2012, <https://www.cdc.gov/training/quicklearns/epimode/index.html>).

License GPL (>=3)

URL https://ggsurveillance.biostats.dev,
https://github.com/biostats-dev/ggsurveillance

BugReports https://github.com/biostats-dev/ggsurveillance/issues
Depends R (>=4.1.0)

Imports cli, dplyr, forcats, ggplot2, glue, ISOweek, lubridate, rlang,
scales, stringr, tidyr, tidyselect, tsibble

Suggests Hmisc, knitr, outbreaks, rmarkdown, spelling, testthat (>=
3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

Language en-GB

LazyData true

NeedsCompilation no

RoxygenNote 7.3.2

Author Alexander Bartel [aut, cre] (<https://orcid.org/0000-0002-1280-6138>)

1

https://www.cdc.gov/training/quicklearns/epimode/index.html
https://ggsurveillance.biostats.dev
https://github.com/biostats-dev/ggsurveillance
https://github.com/biostats-dev/ggsurveillance/issues
https://orcid.org/0000-0002-1280-6138

Maintainer Alexander Bartel <alexander.bartel@fu-berlin.de>

Repository CRAN
Date/Publication 2025-01-31 15:50:05 UTC

Contents

Index

align_dates_seasonal
Create_agegroups v v v v v e e e e e e
geometric_mean
GEOM_EPICUIVE v v vt
geom_epigantt.
geom_vline_year
influenza_germany
scale_y_cases_Ser.
uncount oL L. L Lo e e e e

align_dates_seasonal

align_dates_seasonal

Align dates for seasonal comparison

Description

Standardizes dates from multiple years to enable comparison of epidemic curves and visualization
of seasonal patterns in infectious disease surveillance data. Commonly used for creating periodicity

plots of respiratory diseases like influenza, RSV, or COVID-19.

Usage

align_dates_seasonal(

)

X,
dates_from = NULL,

date_resolution = c("week"”, "isoweek"”, "epiweek", "day"”, "month"),

start = NULL,
target_year = NULL,
drop_leap_week = TRUE

align_and_bin_dates_seasonal(

X7
n=1,
dates_from,

population = 1,
fill_gaps = FALSE,

date_resolution = c("week"”, "isoweek"”, "epiweek", "day"”, "month"),

start = NULL,

align_dates_seasonal 3

target_year = NULL,
drop_leap_week = TRUE
)

Arguments

X Either a data frame with a date column, or a date vector.
Supported date formats are date and datetime and also commonly used char-
acter strings:
* ISO dates "2024-03-09"
* Month "2024-03"
* Week "2024-W@9" or "2024-WQ9-1"
dates_from Column name containing the dates to align. Used when x is a data.frame.
date_resolution
Character string specifying the temporal resolution. One of:
* "week” or "isoweek” - Calendar weeks (ISO 8601), reporting weeks as
used by the ECDC.

* "epiweek"” - Epidemiological weeks (US CDC), i.e. ISO weeks with Sun-
day as week start.

* "month” - Calendar months
e "day" - Daily resolution
start Numeric value indicating epidemic season start:

* For week/epiweek: week number (default: 28, approximately July)
e For month: month number (default: 7 for July)
 For day: day of year (default: 150, approximately June)

target_year Numeric value for the reference year to align dates to. The default target year is
the start of the most recent season in the data. This way the most recent dates
stay unchanged.

drop_leap_week If TRUE and date_resolution is week, isoweek or epiweek, leap weeks (week 53)
are dropped if they are not in the most recent season. Disable if data should be
returned. Dropping week 53 from historical data is the most common approach.
Otherwise historical data for week 53 would map to week 52 if the target season
has no leap week, resulting in a doubling of the case counts.

n Numeric column with case counts. Supports quoted and unquoted column names.
population A number or a numeric column with the population size. Used to calculate the
incidence.
fill_gaps Logical; If TRUE, gaps in the time series will be filled with O cases.
Details

This function helps create standardized epidemic curves by aligning surveillance data from different
years. This enables:

» Comparison of disease patterns across multiple seasons

* Identification of typical seasonal trends

4 create_agegroups

* Detection of unusual disease activity
* Assessment of current season against historical patterns

The alignment can be done at different temporal resolutions (daily, weekly, monthly) with cus-
tomizable season start points to match different disease patterns or surveillance protocols.

Value

A data frame with standardized date columns:

* year: Calendar year from original date

¢ week/month/day: Time unit based on chosen resolution
* date_aligned: Date standardized to target year

* season: Epidemic season identifier (e.g., "2023/24")

* current_season: Logical flag for most recent season
Binning also creates the columns:

¢ n: Sum of cases in bin

e incidence: Incidence calculated using n/population

Examples

Sesonal Visualization of Germany Influenza Surveillance Data
library(ggplot2)

influenza_germany |>
align_dates_seasonal(
dates_from = ReportingWeek, date_resolution = "epiweek”, start = 28
) —> df_flu_aligned

ggplot(df_flu_aligned, aes(x = date_aligned, y = Incidence, color = season)) +
geom_line() +
facet_wrap(~AgeGroup) +
theme_bw()

create_agegroups Create Age Groups from Numeric Values

Description

Creates age groups from numeric values using customizable break points and formatting options.
The function allows for flexible formatting and customization of age group labels.

If a factor is returned, this factor includes factor levels of unobserved age groups. This allows for
reproducible age groups, which can be used for joining data (e.g. adding age grouped population
numbers for incidence calculation).

create_agegroups

Usage

create_agegroups(
values,
age_breaks = c(5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90),
breaks_as_lower_bound = TRUE,
first_group_format = "0-{x}",
interval_format = "{x}-{y}",
last_group_format = "{x}+",
pad_numbers = FALSE,
pad_with = "@",
collapse_single_year_groups = FALSE,
na_label = NA,
return_factor = FALSE

)

Arguments
values Numeric vector of ages to be grouped
age_breaks Numeric vector of break points for age groups.

Default: c(5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90)
breaks_as_lower_bound

Logical; if TRUE (default), breaks are treated as lower bounds of the intervals. If

FALSE, as upper bounds.

first_group_format
Character string template for the first age group. Uses glue syntax.
Default: "0-\{x\}", Other common styles: "<={x3}", "<{x+1}"
interval_format
Character string template for intermediate age groups. Uses glue syntax.
Default: "\{x\}-\{y\}", Other common styles: "{x} to {y}"
last_group_format

Character string template for the last age group. Uses glue syntax.
Default: "\{x\}+", Other common styles: ">={x}",">{x-1}"

pad_numbers Logical or numeric; if numeric, pad numbers up to the specified length (Tip: use

2). Not compatible with calculations within glue formats. Default: FALSE

pad_with Character to use for padding numbers. Default: "0"
collapse_single_year_groups
Logical; if TRUE, groups spanning single years are collapsed. Default: FALSE

na_label Label for NA values. If NA, keeps default NA handling. Default: NA

return_factor Logical; if TRUE, returns a factor, if FALSE returns character vector. Default:

FALSE

Value

Vector of age group labels (character or factor depending on return_factor)

6 geometric_mean

Examples

Basic usage
create_agegroups(1:100)

Custom formatting with upper bounds

create_agegroups(1:100,
breaks_as_lower_bound = FALSE,
interval_format = "{x} to {y}",
first_group_format = "0 to {x}"

)

Ages 1 to 5 are kept as numbers by collapsing single year groups
create_agegroups(1:10,

age_breaks = c(1, 2, 3, 4, 5, 10),

collapse_single_year_groups = TRUE
)

geometric_mean Compute a Geometric Mean

Description

The geometric mean is typically defined for strictly positive values. This function computes the
geometric mean of a numeric vector, with the option to replace certain values (e.g., zeros, non-
positive values, or values below a user-specified threshold) before computation.

Usage

geometric_mean(
X,
na.rm = FALSE,
replace_value = NULL,

replace = c("all”, "non-positive”, "zero")
)
Arguments
X A numeric or complex vector of values.
na.rm Logical. If FALSE (default), the presence of zero or negative values triggers a

warning and returns NA. If TRUE, such values (and any NA) are removed before
computing the geometric mean.

replace_value Numeric or NULL. The value used for replacement, depending on replace (e.g.,
a detection limit (LOD) or quantification limit (LOQ)). If NULL, no replacement
is performed. For recommendations how to use, see details.

replace Character string indicating which values to replace:

geometric_mean 7

"all” Replaces all values less than replace_value with replace_value. This
is useful if you have a global threshold (such as a limit of detection) below
which any measurement is replaced.

"non-positive” Replaces all non-positive values (x <= @) with replace_value.
This is helpful if zeros or negative values are known to be invalid or below
a certain limit.

"zero" Replaces only exact zeros (x == @) with replace_value. Useful if neg-
ative values should be treated as missing.

Details

Replacement Considerations: The geometric mean is only defined for strictly positive numbers
(x > 0). Despite this, the geometric mean can be useful for laboratory measurements which can
contain O or negative values. If these values are treated as NA and are removed, this results in an
upward bias due to missingness. To reduce this, values below the limit of detection (LOD) or limit
of quantification (LOQ) are often replaced with the chosen limit, making this limit the practical
lower limit of the measurement scale. This is therefore an often recommended approach.

There are also alternatives approaches, where values are replaced by either % or L\%D (or LOQ).

These approaches create a gap in the distribution of values (e.g. no values for % < x < LOD)
and should therefore be used with caution.

If the replacement approach for values below LOD or LOQ has a material effect on the in-
terpretation of the results, the values should be treated as statistically censored. In this case,
proper statistical methods to handle (left) censored data should be used.

When replace_value is provided, the function will first perform the specified replacements, then
proceed with the geometric mean calculation. If no replacements are requested but zero or negative
values remain and na.rm = FALSE, an NA will be returned with a warning.

Value

A single numeric value representing the geometric mean of the processed vector x, or NA if the
resulting vector is empty (e.g., if na. rm = TRUE removes all positive values) or if non-positive values
exist when na.rm = FALSE.

Examples

Basic usage with no replacements:
x <- c(1, 2, 3, 4, 5
geometric_mean(x)

Replace all values < 0.5 with 0.5 (common in LOD scenarios):
x3 <- c(0.1, 0.2, 9.4, 1, 5)
geometric_mean(x3, replace_value = 0.5, replace = "all")

Remove zero or negative values, since log(@) = -Inf and log(-1) = NaN
x4 <- c(-1, 0, 1, 2, 3)
geometric_mean(x4, na.rm = TRUE)

geom_epicurve

geom_epicurve Create an epidemic curve plot or used date binning of observations

Description

Creates a epicurve plot for visualizing epidemic case counts in outbreaks (epidemiological curves).
An epicurve is a bar plot, where every case is outlined. geom_epicurve additionally provides date-
based aggregation of cases (e.g. per week or month and many more).

Usage

* For week aggregation both isoweek (World + ECDC) and epiweek (US CDC) are supported.

* stat_bin_date and its alias stat_date_count provide date based binning only. After bin-
ning the by date, these stats behave like ggplot2::stat_count.

geom_epicurve(

)

mapping = NULL,

data = NULL,
stat = "epicurve”,
position = "stack",

date_resolution = NULL,

week_start = getOption("”lubridate.week.start”, 1),
width = NULL,

relative.width = 1,

na.rm = FALSE,

show.legend = NA,

inherit.aes = TRUE

stat_bin_date(

)

mapping = NULL,

data = NULL,
geom = "line”,
position = "stack",

date_resolution = NULL,

week_start = getOption("lubridate.week.start”, 1),
na.rm = FALSE,

show.legend = NA,

inherit.aes = TRUE

stat_date_count(

mapping = NULL,
data = NULL,
geom = "line",

geom_epicurve

position = "stack",
date_resolution = NULL,

week_start =

L

getOption("lubridate.week.start”, 1),

na.rm = FALSE,

show.legend =
inherit.aes =

Arguments

mapping

data
stat

position

date_resolution

week_start

width

relative.width

na.rm

show. legend

NA,
TRUE

Set of aesthetic mappings created by aes. Commonly used mappings:

* x or y: date or datetime. Numeric is technically supported.
« fill: for colouring groups
» weight: if data is already aggregated (e.g. case counts)

The data frame containing the variables for the plot

either "epicurve" for outlines around cases or "date_bin" for outlines around
(fill) groups. For large numbers of cases please use "date_bin" to reduce num-
ber of drawn rectangles.

Position adjustment. Currently supports "stack".

Character string specifying the time unit for date aggregation. Set to NULL or NA
for no date aggregation
Possible values are: "day”, "week”, "month”, "bimonth”, "season”, "quarter”,

n on

"halfyear"”, "year". To special values enforce ISO or US week standard:
¢ isoweek will force dadte_resolution = week and week_start =1 (ISO
and ECDC Standard)
* epiweek will force date_resolution = week and week_start = 7 (US CDC
Standard)

Integer specifying the start of the week (1 = Monday, 7 = Sunday).

Only used when date_resolution includes weeks. Defaults to 1 (Monday).

For isoweek use week_start = 1 and for epiweek use week_start = 7.
Numeric value specifying the width of the bars. If NULL, calculated based on
resolution and relative.width

Numeric value between 0 and 1 adjusting the relative width of bars. Defaults to
1

Other arguments passed to layer. For example:

e colour Colour of the outlines around cases. Disable with colour = NA.
Defaults to "white".

e linewidth Width of the case outlines.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

10 geom_epicurve

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom The geometric object to use to display the data for this layer. When using a
stat_*() function to construct a layer, the geom argument can be used to over-
ride the default coupling between stats and geoms.

Details

Epi Curves are a public health tool for outbreak investigation. For more details see the references.

Value

A ggplot2 geom layer that can be added to a plot

References
* Centers for Disease Control and Prevention. Quick-Learn Lesson: Using an Epi Curve to De-
termine Mode of Spread. USA. https://www.cdc.gov/training/quicklearns/epimode/

* Dicker, Richard C., Fatima Coronado, Denise Koo, and R. Gibson Parrish. 2006. Principles
of Epidemiology in Public Health Practice; an Introduction to Applied Epidemiology and
Biostatistics. 3rd ed. USA. https://stacks.cdc.gov/view/cdc/6914

See Also

scale_y_cases_5er(), geom_vline_year()

Examples

Basic epicurve with dates
library(ggplot2)
set.seed(1)

plot_data_epicurve_imp <- data.frame(
date = rep(as.Date("”2023-12-01") + ((0:300) * 1), times = rpois(301, 0.5))
)

ggplot(plot_data_epicurve_imp, aes(x = date, weight = 2)) +
geom_vline_year(year_break = "01-01", show.legend = TRUE) +
geom_epicurve(date_resolution = "week") +

labs(title = "Epicurve Example”) +

scale_y_cases_ber() +

scale_x_date(date_breaks = "4 weeks", date_labels = "W%V'%g") + # Correct I1SOWeek labels week'year
coord_equal(ratio = 7) + # Use coord_equal for square boxes. 'ratio' are the days per week.
theme_bw()

Categorical epicurve
library(tidyr)
library(outbreaks)

sars_canada_2003 |> # SARS dataset from outbreaks

https://www.cdc.gov/training/quicklearns/epimode/
https://stacks.cdc.gov/view/cdc/6914

geom_epigantt

11

pivot_longer(starts_with("cases”), names_prefix = "cases_", names_to = "origin") |>

ggplot(aes(x =

date, weight = value, fill = origin)) +

geom_epicurve(date_resolution = "week") +
scale_x_date(date_labels = "W%V'%g", date_breaks = "2 weeks") +
scale_y_cases_ber() +

theme_classic()

geom_epigantt

Epi Gantt Chart: Visualize Epidemiological Time Intervals

Description

Various ways of representing a vertical interval defined by y, xmin and xmax. Each case draws a
single graphical object.

Usage

geom_epigantt(

mapping = NULL,

data = NULL,

stat = "identity",
position = "identity",

na.rm = FALSE
show.legend =
inherit.aes =

Arguments

mapping

data

stat

’

NA,
TRUE

Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

The statistical transformation to use on the data for this layer. When using a
geom_* () function to construct a layer, the stat argument can be used the over-
ride the default coupling between geoms and stats. The stat argument accepts
the following:

12

position

na.rm

show. legend

inherit.aes

geom_epigantt

e A Stat ggproto subclass, for example StatCount.

* A string naming the stat. To give the stat as a string, strip the function name
of the stat_ prefix. For example, to use stat_count(), give the stat as
"count”.

* For more information and other ways to specify the stat, see the layer stat
documentation.

A position adjustment to use on the data for this layer. This can be used in
various ways, including to prevent overplotting and improving the display. The
position argument accepts the following:

* The result of calling a position function, such as position_jitter(). This
method allows for passing extra arguments to the position.

* A string naming the position adjustment. To give the position as a string,
strip the function name of the position_ prefix. For example, to use
position_jitter(), give the position as "jitter".

 For more information and other ways to specify the position, see the layer
position documentation.

Other arguments passed on to layer()’s params argument. These arguments
broadly fall into one of 4 categories below. Notably, further arguments to the
position argument, or aesthetics that are required can not be passed through

.. Unknown arguments that are not part of the 4 categories below are ignored.

* Static aesthetics that are not mapped to a scale, but are at a fixed value and
apply to the layer as a whole. For example, colour = "red” or linewidth
= 3. The geom’s documentation has an Aesthetics section that lists the
available options. The ’required’ aesthetics cannot be passed on to the
params. Please note that while passing unmapped aesthetics as vectors is
technically possible, the order and required length is not guaranteed to be
parallel to the input data.

* When constructing a layer using a stat_x() function, the ... argument
can be used to pass on parameters to the geom part of the layer. An example
of this is stat_density(geom = "area”, outline.type = "both”). The
geom’s documentation lists which parameters it can accept.

* Inversely, when constructing a layer using a geom_#() function, the ...
argument can be used to pass on parameters to the stat part of the layer.
An example of this is geom_area(stat = "density”, adjust =0.5). The
stat’s documentation lists which parameters it can accept.

* The key_glyph argument of layer () may also be passed on through
This can be one of the functions described as key glyphs, to change the
display of the layer in the legend.

If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

geom_vline_year 13

Value

A ggplot2 geom layer that can be added to a plot

geom_vline_year Automatically create lines at the turn of every year

Description
Determines turn of year dates based on the range of either the x or y axis of the ggplot.

* geom_vline_year() draws vertical lines at the turn of each year

* geom_hline_year() draws horizontal lines at the turn of each year

Usage

geom_vline_year(
mapping = NULL,

position = "identity",
year_break = "01-01",
just = -0.5,

L

show.legend = NA
)

geom_hline_year(
mapping = NULL,

position = "identity",
year_break = "01-01",
just = -0.5,

L

show.legend = NA

)
Arguments

mapping Mapping created using ggplot2::aes(). Can be used to add the lines to the
legend. E.g. aes(linetype = 'End of Year'). Cannot access data specified in
ggplot2: :ggplot (). Panels created by ggplot2: :facet_wrap() or ggplot2::facet_grid()
are available with aes(linetype = PANEL).

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function.

year_break String specifying the month and day of the year break ("MM-DD"). Defaults to:
"@1-01" for January 1.

just Numeric offset in days (justification). Shifts the lines from the year break date.

Defaults to -@.5, which shifts the line by half a day so if falls in the middle
between December 31 and January 1.

14 influenza_germany

Other arguments passed to layer. For example:
* colour Colour of the line. Try: colour = "grey50"

* linetype Linetype. Try: linetype = "dashed” or linetype = "dotted”
¢ linewidth Width of the line.

* alpha Transparency of the line. used to set an aesthetic to a fixed value,
like colour = "grey25” or linetype = 2.

show. legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes.

Value

A ggplot2 layer that can be added to a plot.

See Also

geom_epicurve(), ggplot2::geom_vline()

Examples

library(ggplot2)
set.seed(1)

plot_data_epicurve_imp <- data.frame(
date = rep(as.Date("2023-12-01") + ((0:300) * 1), times = rpois(301, 0.5))
)

ggplot(plot_data_epicurve_imp, aes(x = date, weight = 2)) +
geom_epicurve(date_resolution = "week") +
geom_vline_year(year_break = "01-01", show.legend = TRUE) +
labs(title = "Epicurve Example") +
scale_y_cases_ber() +
scale_x_date(date_breaks = "4 weeks", date_labels = "W%V'%g") + # Correct ISOWeek labels week'year

theme_bw()
influenza_germany Germany Influenza (FLU) Surveillance data
Description

A subset of the weekly German influenza surveillance data from January 2020 to January 2025.

Usage

influenza_germany

Format

An object of class tb1_df (inherits from tbl, data. frame) with 1037 rows and 4 columns.

scale_y_cases_5Ser 15

Details
A data frame with 1,037 rows and 4 columns:

ReportingWeek Reporting Week in "2024-W03" format
AgeGroup Age groups: 00+ for all and 00-14, 15-59 and 60+ for age stratified cases.
Cases Weekly case count

Incidence Calculated weekly incidence

Source

License CC-BY 4.0: Robert Koch-Institut (2025): Laborbestitigte Influenzafille in Deutschland.
Dataset. Zenodo. DOI:10.5281/zenodo.14619502. https://github.com/robert-koch-institut/
Influenzafaelle_in_Deutschland

scale_y_cases_5er Continuous x-axis and y-axis scale for (case) counts

Description

A continuous ggplot scale for count data with sane defaults for breaks. It uses base: :pretty() to
increase the default number of breaks and prefers Ser breaks. Additionally, the first tick (i.e. zero)
is aligned to the lower left corner.

Usage

scale_y_cases_5er(
name = waiver(),

n =38,

n.min = 5,

u5.bias = 4,
expand = NULL,
labels = waiver(),
limits = NULL,

oob = scales::censor,
na.value = NA_real_,
transform = "identity"”,
position = "left”,
sec.axis = waiver(),
guide = waiver(),

) .

scale_x_cases_b5er(
name = waiver(),
n =38,
n.min = 5,

https://github.com/robert-koch-institut/Influenzafaelle_in_Deutschland
https://github.com/robert-koch-institut/Influenzafaelle_in_Deutschland

16 scale_y_cases_5er

u5.bias = 4,

expand = NULL,

labels = waiver(),
limits = NULL,

oob = scales::censor,
na.value = NA_real_,
transform = "identity"”,
position = "bottom”,
sec.axis = waiver(),
guide = waiver(),

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

n Target number of breaks passed to base: :pretty(). Defaults to 8.
n.min Minimum number of breaks passed to base: :pretty (). Defaults to 5.

u5.bias The "5-bias" parameter passed to base: :pretty(); higher values push the breaks
more strongly toward multiples of 5. Defaults to 4.

expand Uses own expansion logic. Use expand = waiver() to restore ggplot defaults
or ggplot2: :expansion() to modify

labels One of:
* NULL for no labels
* waiver() for the default labels computed by the transformation object
* A character vector giving labels (must be same length as breaks)
* An expression vector (must be the same length as breaks). See ?plotmath
for details.
* A function that takes the breaks as input and returns labels as output. Also
accepts rlang lambda function notation.
limits One of:

* NULL to use the default scale range

* A numeric vector of length two providing limits of the scale. Use NA to
refer to the existing minimum or maximum

* A function that accepts the existing (automatic) limits and returns new
limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

oob One of:

¢ Function that handles limits outside of the scale limits (out of bounds). Also
accepts rlang lambda function notation.

* The default (scales: : censor()) replaces out of bounds values with NA.

uncount 17

e scales::squish() for squishing out of bounds values into range.
* scales::squish_infinite() for squishing infinite values into range.

na.value Missing values will be replaced with this value.

transform For continuous scales, the name of a transformation object or the object itself.
Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms",
"identity", "log", "logl10", "loglp", "log2", "logit", "modulus", "probability",

"non "non non

"probit", "pseudo_log", "reciprocal”, "reverse", "sqrt" and "time".

A transformation object bundles together a transform, its inverse, and methods

for generating breaks and labels. Transformation objects are defined in the scales
package, and are called transform_<name>. If transformations require argu-
ments, you can call them from the scales package, e.g. scales: : transform_boxcox(p
= 2). You can create your own transformation with scales: :new_transform().

position For position scales, The position of the axis. left or right for y axes, top or
bottom for x axes.

sec.axis sec_axis() is used to specify a secondary axis.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

Additional arguments passed on to base: :pretty().

Value

A ggplot?2 scale object that can be added to a plot.

See Also

geom_epicurve(), ggplot2::scale_y_continuous(), base: :pretty()

Examples

library(ggplot2)

data <- data.frame(date = as.Date("”2024-01-01") + 0:30)

ggplot(data, aes(x = date)) +
geom_epicurve(date_resolution = "week") +
scale_y_cases_ber()

uncount Duplicate rows according to a weighting variable

Description

uncount () is provided by the tidyr package, and re-exported by ggsurveillance. See tidyr: :uncount ()
for more details.

uncount () and its alias expand_counts() are complements of dplyr::count(): they take a data
frame with a column of frequencies and duplicate each row according to those frequencies.

18 uncount

Usage
uncount(data, weights, ..., .remove = TRUE, .id = NULL)
expand_counts(data, weights, ..., .remove = TRUE, .id = NULL)
Arguments
data A data frame, tibble, or grouped tibble.
weights A vector of weights. Evaluated in the context of data; supports quasiquotation.
Additional arguments passed on to methods.
.remove If TRUE, and weights is the name of a column in data, then this column is
removed.
.id Supply a string to create a new variable which gives a unique identifier for each
created row.
Value

A data. frame with rows duplicated according to weights.

Examples

df <- data.frame(x = c("a", "b"), n = c(2, 3))
df |> uncount(n)

Or equivalently:

df |> expand_counts(n)

Index

+ datasets key glyphs, 12
geom_epicurve, 8
influenza_germany, 14 lambda, 16
layer, 9, 14
aes, 9 layer position, 12
aes(), 11 layer stat, 12
align_and_bin_dates_seasonal layer(), 12
(align_dates_seasonal), 2
align_dates_seasonal, 2 scale_x_cases_5er (scale_y_cases_ber),
15
base::pretty(), 15-17 scale_y_cases_5er, 15
borders(), 10, 12 scale_y_cases_5er(), 10
scales: :censor(), 16
coord_cartesian(), 16 scales: :new_transform(), 17
create_agegroups, 4 scales::squish(), 17
scales: :squish_infinite(), 17
dplyr::count(), 17 sec_axis(Q), 17

stat_bin_date (geom_epicurve), 8
stat_date_count (geom_epicurve), 8
StatBinDate (geom_epicurve), 8
StatDateCount (geom_epicurve), 8
StatEpicurve (geom_epicurve), 8

expand_counts (uncount), 17
fortify(), 11

geom_epicurve, 8
geom_epicurve(), 14, 17
geom_epigantt, 11

geom_hline_year (geom_vline_year), 13
geom_vline_year, 13
geom_vline_year(), 10
geometric_mean, 6

ggplot(), 11

ggplot2::aes(), I3

ggplot2: :expansion(), 16
ggplot2::facet_grid(), 13
ggplot2::facet_wrap(), 13
ggplot2: :geom_vline(), 14
ggplot2: :ggplot(), I3
ggplot2::scale_y_continuous(), /7
ggplot2::stat_count, 8§
guides(), 17

tidyr: :uncount(), 17

uncount, 17

influenza_germany, 14

19

	align_dates_seasonal
	create_agegroups
	geometric_mean
	geom_epicurve
	geom_epigantt
	geom_vline_year
	influenza_germany
	scale_y_cases_5er
	uncount
	Index

