grafzahl: Supervised Machine Learning for Textual Data Using Transformers
and 'Quanteda'
Duct tape the 'quanteda' ecosystem (Benoit et al., 2018) <doi:10.21105/joss.00774> to modern Transformer-based text classification models (Wolf et al., 2020) <doi:10.18653/v1/2020.emnlp-demos.6>, in order to facilitate supervised machine learning for textual data. This package mimics the behaviors of 'quanteda.textmodels' and provides a function to setup the 'Python' environment to use the pretrained models from 'Hugging Face' <https://huggingface.co/>. More information: <doi:10.5117/CCR2023.1.003.CHAN>.
Version: |
0.0.11 |
Depends: |
R (≥ 3.5) |
Imports: |
jsonlite, lime, quanteda, reticulate, utils, stats |
Suggests: |
knitr, quanteda.textmodels, rmarkdown, testthat (≥ 3.0.0), withr |
Published: |
2024-03-26 |
DOI: |
10.32614/CRAN.package.grafzahl |
Author: |
Chung-hong Chan
[aut, cre] |
Maintainer: |
Chung-hong Chan <chainsawtiney at gmail.com> |
BugReports: |
https://github.com/gesistsa/grafzahl/issues |
License: |
GPL (≥ 3) |
URL: |
https://gesistsa.github.io/grafzahl/,
https://github.com/gesistsa/grafzahl |
NeedsCompilation: |
no |
Citation: |
grafzahl citation info |
CRAN checks: |
grafzahl results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=grafzahl
to link to this page.