A correlation-based batch process for fast, accurate imputation for high dimensional missing data problems via chained random forests. See Waggoner (2023) <doi:10.1007/s00180-023-01325-9> for more on 'hdImpute', Stekhoven and Bühlmann (2012) <doi:10.1093/bioinformatics/btr597> for more on 'missForest', and Mayer (2022) <https://github.com/mayer79/missRanger> for more on 'missRanger'.
Version: | 0.2.1 |
Imports: | missRanger, plyr, purrr, magrittr, tibble, dplyr, tidyselect, tidyr, cli |
Suggests: | testthat (≥ 3.0.0), knitr, rmarkdown, usethis, missForest, tidyverse |
Published: | 2023-08-07 |
DOI: | 10.32614/CRAN.package.hdImpute |
Author: | Philip Waggoner [aut, cre] |
Maintainer: | Philip Waggoner <philip.waggoner at gmail.com> |
BugReports: | https://github.com/pdwaggoner/hdImpute/issues |
License: | MIT + file LICENSE |
URL: | https://github.com/pdwaggoner/hdImpute |
NeedsCompilation: | no |
Materials: | README NEWS |
CRAN checks: | hdImpute results |
Reference manual: | hdImpute.pdf |
Vignettes: |
Getting Started MAD Evaluation NA Checking |
Package source: | hdImpute_0.2.1.tar.gz |
Windows binaries: | r-devel: hdImpute_0.2.1.zip, r-release: hdImpute_0.2.1.zip, r-oldrel: hdImpute_0.2.1.zip |
macOS binaries: | r-release (arm64): hdImpute_0.2.1.tgz, r-oldrel (arm64): hdImpute_0.2.1.tgz, r-release (x86_64): hdImpute_0.2.1.tgz, r-oldrel (x86_64): hdImpute_0.2.1.tgz |
Old sources: | hdImpute archive |
Please use the canonical form https://CRAN.R-project.org/package=hdImpute to link to this page.