With the rapid advancement of artificial intelligence and machine learning (AI/ML), researchers from a wide range of disciplines increasingly use predictions from pre-trained algorithms as outcome variables in statistical analyses. However, reifying algorithmically-derived values as measured outcomes may lead to biased estimates and anti-conservative inference (Hoffman et al., 2023). The statistical challenges encountered when drawing inference on predicted data (IPD) include:
Several works have proposed methods for IPD, including
post-prediction inference (PostPI) by Wang et
al., 2020, prediction-powered inference (PPI) and PPI++ by Angelopoulos
et al., 2023a and Angelopoulos et al., 2023b,
and post-prediction adaptive inference (PSPA) by Miao et al., 2023. To enable
researchers and practitioners interested in these state-of-the-art
methods, we have developed ipd
, a open-source
R
package that implements these methods under the umbrella
of IPD.
This vignette provides a guide to using the ipd
package,
including installation instructions, examples of data generation, model
fitting, and usage of custom methods. The examples demonstrate the
package’s functionality.
Following the notation of Miao et al., 2023, we assume we have the following data structure:
\[\mathbb{E}\left[Y^{\mathcal{U}} \mid \boldsymbol{X}^{\mathcal{U}}\right] = g^{-1}\left(\boldsymbol{X}^{\mathcal{U}'}\beta\right),\]
where \(\beta\) is a vector of regression coefficients and \(g(\cdot)\) is a given link function, such as the identity link for linear regression, the logistic link for logistic regression, or the log link for Poisson regression. However, in practice, we do not observe \(Y^\mathcal{U}\) in the ‘unlabeled’ subset of the data. Instead, these values are replaced by the predicted \(f(X^\mathcal{U})\). We can use methods for IPD to obtain corrected estimates and standard errors when we replace these unobserved \(Y^\mathcal{U}\) by \(f(X^\mathcal{U})\).
To install the development version of ipd
from GitHub, you can use the
devtools
package:
We provide a simple example to demonstrate the basic use of the
functions included in the ipd
package.
The ipd
packages provides a unified function,
simdat
, for generating synthetic datasets for various
models. The function currently supports “mean”, “quantile”, “ols”,
“logistic”, and “poisson” models.
n
: A vector of size 3 indicating the sample size in the
training, labeled, and unlabeled data sets.effect
: A float specifying the regression coefficient
for the first variable of interest (defaults to 1).sigma_Y
: A float specifying the residual variance for
the generated outcome.model
: The type of model to be generated. Must be one
of "mean"
, "quantile"
, "ols"
,
"logistic"
, or "poisson"
.The simdat
function generate a data.frame with three
subsets: (1) an independent “training” set with additional observations
used to fit a prediction model, and “labeled” and “unlabeled” sets which
contain the observed and predicted outcomes and the simulated features
of interest.
We can generate a continuous outcome and relevant predictors for
linear regression as follows. The simdat
function generates
four independent covariates, \(X_1\),
\(X_2\), \(X_3\), and \(X_4\), and the outcome:
\[Y = \text{effect}\times X_1 + \frac{1}{2}\times X_2^2 + \frac{1}{3}\times X_3^3 + \frac{1}{4}\times X_4^2 + \varepsilon_y\]
where effect
is one of the function arguments and \(\varepsilon_y \sim N(0, \text{sigma_Y})\),
with sigma_Y
being another argument. Here, the
simdat
function generates three subsets of data, a
“training” subset, a “labeled” subset, and an “unlabeled” subset, based
on the sizes in n
. It then learns the prediction rule for
the outcome in the “training” subset using a generalized additive model
and predicts these outcomes in the “labeled” and “unlabeled”
subsets:
#-- Generate a Dataset for Linear Regression
set.seed(123)
n <- c(10000, 500, 1000)
dat_ols <- simdat(n = n, effect = 1, sigma_Y = 4, model = "ols")
#-- Print First 6 Rows of Training, Labeled, and Unlabeled Subsets
options(digits=2)
head(dat_ols[dat_ols$set_label == "training",])
#> X1 X2 X3 X4 Y f set_label
#> 1 -0.560 -0.56 0.82 -0.356 -0.15 NA training
#> 2 -0.230 0.13 -1.54 0.040 -4.49 NA training
#> 3 1.559 1.82 -0.59 1.152 -1.08 NA training
#> 4 0.071 0.16 -0.18 1.485 -3.67 NA training
#> 5 0.129 -0.72 -0.71 0.634 2.19 NA training
#> 6 1.715 0.58 -0.54 -0.037 -1.42 NA training
head(dat_ols[dat_ols$set_label == "labeled",])
#> X1 X2 X3 X4 Y f set_label
#> 10001 2.37 -1.8984 0.20 -0.17 1.40 3.24 labeled
#> 10002 -0.17 1.7428 0.26 -2.05 3.56 1.03 labeled
#> 10003 0.93 -1.0947 0.76 1.25 -3.66 2.37 labeled
#> 10004 -0.57 0.1757 0.32 0.65 -0.56 0.58 labeled
#> 10005 0.23 2.0620 -1.35 1.46 -0.82 -0.15 labeled
#> 10006 1.13 -0.0028 0.23 -0.24 7.30 2.16 labeled
head(dat_ols[dat_ols$set_label == "unlabeled",])
#> X1 X2 X3 X4 Y f set_label
#> 10501 0.99 -3.280 -0.39 0.97 8.4 1.25 unlabeled
#> 10502 -0.66 0.142 -1.36 -0.22 -7.2 -1.08 unlabeled
#> 10503 0.58 -1.368 -1.73 0.15 5.6 -0.31 unlabeled
#> 10504 -0.14 -0.728 0.26 -0.23 -4.2 0.91 unlabeled
#> 10505 -0.17 -0.068 -1.10 0.58 2.2 -0.39 unlabeled
#> 10506 0.58 0.514 -0.69 0.97 -1.2 0.76 unlabeled
The simdat
function provides observed and unobserved
outcomes for both the labeled and unlabeled datasets, though in practice
the observed outcomes are not in the unlabeled set. We can visualize the
relationships between these variables in the labeled data subset:
We can see that:
As another example, we can generate a binary outcome and relevant predictors for logistic regression as follows:
#-- Generate a Dataset for Logistic Regression
set.seed(123)
dat_logistic <- simdat(n = n, effect = 3, sigma_Y = 1,
model = "logistic")
#-- Print First 6 Rows of Training, Labeled, and Unlabeled Subsets
head(dat_logistic[dat_logistic$set_label == "training",])
#> X1 X2 X3 X4 Y f set_label
#> 1 -0.560 -0.56 0.82 -0.356 1 NA training
#> 2 -0.230 0.13 -1.54 0.040 0 NA training
#> 3 1.559 1.82 -0.59 1.152 1 NA training
#> 4 0.071 0.16 -0.18 1.485 0 NA training
#> 5 0.129 -0.72 -0.71 0.634 0 NA training
#> 6 1.715 0.58 -0.54 -0.037 1 NA training
head(dat_logistic[dat_logistic$set_label == "labeled",])
#> X1 X2 X3 X4 Y f set_label
#> 10001 2.37 -1.8984 0.20 -0.17 1 1 labeled
#> 10002 -0.17 1.7428 0.26 -2.05 1 1 labeled
#> 10003 0.93 -1.0947 0.76 1.25 1 1 labeled
#> 10004 -0.57 0.1757 0.32 0.65 1 0 labeled
#> 10005 0.23 2.0620 -1.35 1.46 1 1 labeled
#> 10006 1.13 -0.0028 0.23 -0.24 1 1 labeled
head(dat_logistic[dat_logistic$set_label == "unlabeled",])
#> X1 X2 X3 X4 Y f set_label
#> 10501 0.99 -3.280 -0.39 0.97 1 1 unlabeled
#> 10502 -0.66 0.142 -1.36 -0.22 0 0 unlabeled
#> 10503 0.58 -1.368 -1.73 0.15 1 1 unlabeled
#> 10504 -0.14 -0.728 0.26 -0.23 0 0 unlabeled
#> 10505 -0.17 -0.068 -1.10 0.58 1 0 unlabeled
#> 10506 0.58 0.514 -0.69 0.97 1 1 unlabeled
We can again visualize the relationships between the true and predicted outcome variables in the labeled data subset and see that 81.8% observations are correctly predicted:
We compare two non-IPD approaches to analyzing the data to methods
included in the ipd
package.
#--- Fit the Naive Regression
lm(f ~ X1, data = dat_ols[dat_ols$set_label == "unlabeled",]) |>
summary()
#>
#> Call:
#> lm(formula = f ~ X1, data = dat_ols[dat_ols$set_label == "unlabeled",
#> ])
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -2.5426 -0.6138 -0.0153 0.6345 2.8907
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.8391 0.0297 28.3 <2e-16 ***
#> X1 0.9848 0.0296 33.3 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 0.94 on 998 degrees of freedom
#> Multiple R-squared: 0.527, Adjusted R-squared: 0.526
#> F-statistic: 1.11e+03 on 1 and 998 DF, p-value: <2e-16
#--- Fit the Classic Regression
lm(Y ~ X1, data = dat_ols[dat_ols$set_label == "labeled",]) |>
summary()
#>
#> Call:
#> lm(formula = Y ~ X1, data = dat_ols[dat_ols$set_label == "labeled",
#> ])
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -15.262 -2.828 -0.094 2.821 11.685
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.908 0.187 4.86 1.6e-06 ***
#> X1 1.097 0.192 5.71 1.9e-08 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 4.2 on 498 degrees of freedom
#> Multiple R-squared: 0.0614, Adjusted R-squared: 0.0596
#> F-statistic: 32.6 on 1 and 498 DF, p-value: 1.95e-08
You can fit the various IPD methods to your data and obtain summaries
using the provided wrapper function, ipd()
:
#-- Specify the Formula
formula <- Y - f ~ X1
#-- Fit the PostPI Bootstrap Correction
nboot <- 200
ipd::ipd(formula,
method = "postpi_boot", model = "ols", data = dat_ols, label = "set_label",
nboot = nboot) |>
summary()
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: postpi_boot
#> Model: ols
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> (Intercept) 0.873 0.183 0.514 1.23
#> X1 1.151 0.183 0.793 1.51
#-- Fit the PostPI Analytic Correction
ipd::ipd(formula,
method = "postpi_analytic", model = "ols", data = dat_ols, label = "set_label") |>
summary()
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: postpi_analytic
#> Model: ols
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> (Intercept) 0.865 0.183 0.505 1.22
#> X1 1.145 0.182 0.788 1.50
#-- Fit the PPI Correction
ipd::ipd(formula,
method = "ppi", model = "ols", data = dat_ols, label = "set_label") |>
summary()
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: ppi
#> Model: ols
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> (Intercept) 0.871 0.182 0.514 1.23
#> X1 1.122 0.195 0.740 1.50
#-- Fit the PPI++ Correction
ipd::ipd(formula,
method = "ppi_plusplus", model = "ols", data = dat_ols, label = "set_label") |>
summary()
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: ppi_plusplus
#> Model: ols
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> (Intercept) 0.881 0.182 0.524 1.24
#> X1 1.116 0.187 0.750 1.48
#-- Fit the PSPA Correction
ipd::ipd(formula,
method = "pspa", model = "ols", data = dat_ols, label = "set_label") |>
summary()
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: pspa
#> Model: ols
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> (Intercept) 0.881 0.182 0.524 1.24
#> X1 1.109 0.187 0.743 1.47
We also show how these methods compare for logistic regression.
#--- Fit the Naive Regression
glm(f ~ X1, family = binomial,
data = dat_logistic[dat_logistic$set_label == "unlabeled",]) |>
summary()
#>
#> Call:
#> glm(formula = f ~ X1, family = binomial, data = dat_logistic[dat_logistic$set_label ==
#> "unlabeled", ])
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 1.173 0.125 9.36 <2e-16 ***
#> X1 3.832 0.257 14.93 <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#> Null deviance: 1328.13 on 999 degrees of freedom
#> Residual deviance: 569.36 on 998 degrees of freedom
#> AIC: 573.4
#>
#> Number of Fisher Scoring iterations: 7
#--- Fit the Classic Regression
glm(Y ~ X1, family = binomial,
data = dat_logistic[dat_logistic$set_label == "labeled",]) |>
summary()
#>
#> Call:
#> glm(formula = Y ~ X1, family = binomial, data = dat_logistic[dat_logistic$set_label ==
#> "labeled", ])
#>
#> Coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) 0.677 0.121 5.58 2.5e-08 ***
#> X1 2.064 0.196 10.56 < 2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> (Dispersion parameter for binomial family taken to be 1)
#>
#> Null deviance: 665.99 on 499 degrees of freedom
#> Residual deviance: 449.44 on 498 degrees of freedom
#> AIC: 453.4
#>
#> Number of Fisher Scoring iterations: 5
You can again fit the various IPD methods to your data and obtain
summaries using the provided wrapper function, ipd()
:
#-- Specify the Formula
formula <- Y - f ~ X1
#-- Fit the PostPI Bootstrap Correction
nboot <- 200
ipd::ipd(formula, method = "postpi_boot", model = "logistic",
data = dat_logistic, label = "set_label", nboot = nboot) |>
summary()
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: postpi_boot
#> Model: logistic
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> (Intercept) 0.5503 0.0741 0.4052 0.7
#> X1 1.1252 0.0891 0.9506 1.3
#-- Fit the PPI Correction
ipd::ipd(formula, method = "ppi", model = "logistic",
data = dat_logistic, label = "set_label") |>
summary()
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: ppi
#> Model: logistic
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> [1,] 0.711 0.162 0.394 1.03
#> [2,] 2.092 0.214 1.673 2.51
#-- Fit the PPI++ Correction
ipd::ipd(formula, method = "ppi_plusplus", model = "logistic",
data = dat_logistic, label = "set_label") |>
summary()
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: ppi_plusplus
#> Model: logistic
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> [1,] 0.688 0.128 0.438 0.94
#> [2,] 2.074 0.189 1.702 2.44
#-- Fit the PSPA Correction
ipd::ipd(formula, method = "pspa", model = "logistic",
data = dat_logistic, label = "set_label") |>
summary()
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: pspa
#> Model: logistic
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> (Intercept) 0.684 0.124 0.441 0.93
#> X1 2.072 0.192 1.695 2.45
The package also provides custom print
,
summary
, tidy
, glance
, and
augment
methods to facilitate easy model inspection:
#-- Fit the PostPI Bootstrap Correction
nboot <- 200
fit_postpi <- ipd::ipd(formula,
method = "postpi_boot", model = "ols", data = dat_ols, label = "set_label",
nboot = nboot)
The print
method gives an abbreviated summary of the
output from the ipd
function:
The summary
method gives more detailed information about
the estimated coefficients, standard errors, and confidence limits:
#-- Summarize the Model
summ_fit_postpi <- summary(fit_postpi)
#-- Print the Model Summary
print(summ_fit_postpi)
#>
#> Call:
#> Y - f ~ X1
#>
#> Method: postpi_boot
#> Model: ols
#> Intercept: Yes
#>
#> Coefficients:
#> Estimate Std.Error Lower.CI Upper.CI
#> (Intercept) 0.867 0.183 0.508 1.23
#> X1 1.154 0.183 0.796 1.51
The tidy
method organizes the model coefficients into a
tidy format.
The glance
method returns a one-row summary of the model
fit.
The augment
method adds model predictions and residuals
to the original dataset.
#-- Augment the Original Data with Fitted Values and Residuals
augmented_df <- augment(fit_postpi)
head(augmented_df)
#> X1 X2 X3 X4 Y f set_label .fitted .resid
#> 10501 0.99 -3.280 -0.39 0.97 8.4 1.25 unlabeled 2.00 6.4
#> 10502 -0.66 0.142 -1.36 -0.22 -7.2 -1.08 unlabeled 0.10 -7.3
#> 10503 0.58 -1.368 -1.73 0.15 5.6 -0.31 unlabeled 1.53 4.1
#> 10504 -0.14 -0.728 0.26 -0.23 -4.2 0.91 unlabeled 0.71 -4.9
#> 10505 -0.17 -0.068 -1.10 0.58 2.2 -0.39 unlabeled 0.67 1.5
#> 10506 0.58 0.514 -0.69 0.97 -1.2 0.76 unlabeled 1.53 -2.7
The ipd
package offers a suite of functions for
conducting inference on predicted data. With custom methods for
printing, summarizing, tidying, glancing, and augmenting model outputs,
ipd
streamlines the process of IPD-based inference in
R
. We will continue to develop this package to include more
targets of inference and IPD methods as they are developed, as well as
additional functionality for analyzing such data. For further
information and detailed documentation, please refer to the function
help pages within the package, e.g.,
For questions, comments, or any other feedback, please contact the developers (ssalerno@fredhutch.org).
Contributions are welcome! Please open an issue or submit a pull request on GitHub.
This package is licensed under the MIT License.