kernelshap: Kernel SHAP

Efficient implementation of Kernel SHAP, see Lundberg and Lee (2017), and Covert and Lee (2021) <http://proceedings.mlr.press/v130/covert21a>. Furthermore, for up to 14 features, exact permutation SHAP values can be calculated. The package plays well together with meta-learning packages like 'tidymodels', 'caret' or 'mlr3'. Visualizations can be done using the R package 'shapviz'.

Version: 0.7.0
Depends: R (≥ 3.2.0)
Imports: foreach, MASS, stats, utils
Suggests: doFuture, testthat (≥ 3.0.0)
Published: 2024-08-17
DOI: 10.32614/CRAN.package.kernelshap
Author: Michael Mayer ORCID iD [aut, cre], David Watson ORCID iD [aut], Przemyslaw Biecek ORCID iD [ctb]
Maintainer: Michael Mayer <mayermichael79 at gmail.com>
BugReports: https://github.com/ModelOriented/kernelshap/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/ModelOriented/kernelshap
NeedsCompilation: no
Materials: README NEWS
In views: MachineLearning
CRAN checks: kernelshap results

Documentation:

Reference manual: kernelshap.pdf

Downloads:

Package source: kernelshap_0.7.0.tar.gz
Windows binaries: r-devel: kernelshap_0.7.0.zip, r-release: kernelshap_0.7.0.zip, r-oldrel: kernelshap_0.7.0.zip
macOS binaries: r-release (arm64): kernelshap_0.7.0.tgz, r-oldrel (arm64): kernelshap_0.7.0.tgz, r-release (x86_64): kernelshap_0.7.0.tgz, r-oldrel (x86_64): kernelshap_0.7.0.tgz
Old sources: kernelshap archive

Reverse dependencies:

Reverse imports: SEMdeep, survex

Linking:

Please use the canonical form https://CRAN.R-project.org/package=kernelshap to link to this page.