The Leiden R package supports calling built-in methods for Bipartite graphs. This vignette assumes you already have the ‘leiden’ package installed. See the other vignettes for details.
First we import the functions required in the package.
library("leiden")
We also require a example bipartite graph. Here we import a dataset from the ‘networkdata’ package (bear in mind this is a large package not available on CRAN).
remotes::install_github("schochastics/networkdata")
bipartite_graph <- networkdata::southern_women
bipartite_graph
#> IGRAPH 0113559 UN-B 32 93 --
#> + attr: type (v/l), name (v/c)
#> + edges from 0113559 (vertex names):
#> [1] EVELYN --E1 EVELYN --E2 EVELYN --E3 EVELYN --E4 EVELYN --E5 EVELYN --E6 EVELYN --E8
#> [8] EVELYN --E9 LAURA --E1 LAURA --E2 LAURA --E3 LAURA --E5 LAURA --E6 LAURA --E7
#> [15] LAURA --E8 THERESA --E2 THERESA --E3 THERESA --E4 THERESA --E5 THERESA --E6 THERESA --E7
#> [22] THERESA --E8 THERESA --E9 BRENDA --E1 BRENDA --E3 BRENDA --E4 BRENDA --E5 BRENDA --E6
#> [29] BRENDA --E7 BRENDA --E8 CHARLOTTE--E3 CHARLOTTE--E4 CHARLOTTE--E5 CHARLOTTE--E7 FRANCES --E3
#> [36] FRANCES --E5 FRANCES --E6 FRANCES --E8 ELEANOR --E5 ELEANOR --E6 ELEANOR --E7 ELEANOR --E8
#> [43] PEARL --E6 PEARL --E8 PEARL --E9 RUTH --E5 RUTH --E7 RUTH --E8 RUTH --E9
#> [50] VERNE --E7 VERNE --E8 VERNE --E9 VERNE --E12 MYRA --E8 MYRA --E9 MYRA --E10
#> + ... omitted several edges
Now we have a bipartite graph structure. This structure has a “type” vertex attribute defining 2 distinct sets of vertices that do not have edges within them
table(as.numeric(V(bipartite_graph)$type))
#>
#> 0 1
#> 18 14
Here we import a plotting function to display these 2 groups.
library("graphsim")
node.cols <- c("palevioletred", "lightblue")[as.integer(V(bipartite_graph)$type)+1]
plot(bipartite_graph, vertex.color = node.cols, layout = layout.kamada.kawai)
This data can also be represented by an adjacency matrix derived from a graph object.
library("igraph")
bipartite_matrix <- igraph::as_adjacency_matrix(bipartite_graph)
bipartite_matrix
#> 32 x 32 sparse Matrix of class "dgCMatrix"
#> [[ suppressing 32 column names 'EVELYN', 'LAURA', 'THERESA' ... ]]
#>
#> EVELYN . . . . . . . . . . . . . . . . . . 1 1 1 1 1 1 . 1 1 . . . . .
#> LAURA . . . . . . . . . . . . . . . . . . 1 1 1 . 1 1 1 1 . . . . . .
#> THERESA . . . . . . . . . . . . . . . . . . . 1 1 1 1 1 1 1 1 . . . . .
#> BRENDA . . . . . . . . . . . . . . . . . . 1 . 1 1 1 1 1 1 . . . . . .
#> CHARLOTTE . . . . . . . . . . . . . . . . . . . . 1 1 1 . 1 . . . . . . .
#> FRANCES . . . . . . . . . . . . . . . . . . . . 1 . 1 1 . 1 . . . . . .
#> ELEANOR . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 . . . . . .
#> PEARL . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 1 . . . . .
#> RUTH . . . . . . . . . . . . . . . . . . . . . . 1 . 1 1 1 . . . . .
#> VERNE . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 . . 1 . .
#> MYRA . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 . 1 . .
#> KATHERINE . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 . 1 1 1
#> SYLVIA . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 1 . 1 1 1
#> NORA . . . . . . . . . . . . . . . . . . . . . . . 1 1 . 1 1 1 1 1 1
#> HELEN . . . . . . . . . . . . . . . . . . . . . . . . 1 1 . 1 1 1 1 1
#> DOROTHY . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 1 . 1 . .
#> OLIVIA . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 . . .
#> FLORA . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . 1 . . .
#> E1 1 1 . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#> E2 1 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
#> E3 1 1 1 1 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . .
#> E4 1 . 1 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
#> E5 1 1 1 1 1 1 1 . 1 . . . . . . . . . . . . . . . . . . . . . . .
#> E6 1 1 1 1 . 1 1 1 . . . . . 1 . . . . . . . . . . . . . . . . . .
#> E7 . 1 1 1 1 . 1 . 1 1 . . 1 1 1 . . . . . . . . . . . . . . . . .
#> E8 1 1 1 1 . 1 1 1 1 1 1 1 1 . 1 1 . . . . . . . . . . . . . . . .
#> E9 1 . 1 . . . . 1 1 1 1 1 1 1 . 1 1 1 . . . . . . . . . . . . . .
#> E10 . . . . . . . . . . 1 1 1 1 1 1 . . . . . . . . . . . . . . . .
#> E11 . . . . . . . . . . . . . 1 1 . 1 1 . . . . . . . . . . . . . .
#> E12 . . . . . . . . . 1 1 1 1 1 1 1 . . . . . . . . . . . . . . . .
#> E13 . . . . . . . . . . . 1 1 1 1 . . . . . . . . . . . . . . . . .
#> E14 . . . . . . . . . . . 1 1 1 1 . . . . . . . . . . . . . . . . .
Then the Leiden algorithm can be run on the adjacency matrix using a partition type for Bipartite graphs. Here the types are computed automatically.
partition <- leiden(bipartite_matrix, partition_type = "CPMVertexPartition.Bipartite", resolution_parameter = 0.2, seed = 42)
#> Warning in deparse(substitute(arg)): NAs introduced by coercion to integer range
#> Warning in paste(sig, collapse = "#"): NAs introduced by coercion to integer range
#> Warning in deparse(x[[1L]]): NAs introduced by coercion to integer range
#> Warning in deparse(expr, width.cutoff, ...): NAs introduced by coercion to integer range
#> Warning in paste(deparse(expr, width.cutoff, ...), collapse = collapse): NAs introduced by coercion to integer range
#> Warning in deparse(x[[1L]]): NAs introduced by coercion to integer range
#> Warning in deparse(expr, width.cutoff, ...): NAs introduced by coercion to integer range
#> Warning in paste(deparse(expr, width.cutoff, ...), collapse = collapse): NAs introduced by coercion to integer range
#> Warning in deparse(x[[1L]]): NAs introduced by coercion to integer range
#> Warning in deparse(expr, width.cutoff, ...): NAs introduced by coercion to integer range
#> Warning in paste(deparse(expr, width.cutoff, ...), collapse = collapse): NAs introduced by coercion to integer range
#> Warning in paste0("igraph::", x): NAs introduced by coercion to integer range
#> Warning in paste0("igraph::", x): NAs introduced by coercion to integer range
#> Warning in paste0("igraph::", x): NAs introduced by coercion to integer range
#> Warning in paste0("igraph::", x): NAs introduced by coercion to integer range
#> Warning in paste(el[, 1], el[, 2], sep = "|"): NAs introduced by coercion to integer range
#> Warning in paste(el[, 1], el[, 2], sep = "|"): NAs introduced by coercion to integer range
#> Warning in deparse(substitute(arg)): NAs introduced by coercion to integer range
#> Warning in paste0("igraph::", x): NAs introduced by coercion to integer range
#> Warning in deparse(x[[1L]]): NAs introduced by coercion to integer range
#> Warning in deparse(expr, width.cutoff, ...): NAs introduced by coercion to integer range
#> Warning in paste(deparse(expr, width.cutoff, ...), collapse = collapse): NAs introduced by coercion to integer range
#> Warning in deparse(x[[1L]]): NAs introduced by coercion to integer range
#> Warning in deparse(expr, width.cutoff, ...): NAs introduced by coercion to integer range
#> Warning in paste(deparse(expr, width.cutoff, ...), collapse = collapse): NAs introduced by coercion to integer range
#> Warning in deparse(x[[1L]]): NAs introduced by coercion to integer range
#> Warning in deparse(expr, width.cutoff, ...): NAs introduced by coercion to integer range
#> Warning in paste(deparse(expr, width.cutoff, ...), collapse = collapse): NAs introduced by coercion to integer range
#> Warning in deparse(x[[1L]]): NAs introduced by coercion to integer range
#> Warning in deparse(expr, width.cutoff, ...): NAs introduced by coercion to integer range
#> Warning in paste(deparse(expr, width.cutoff, ...), collapse = collapse): NAs introduced by coercion to integer range
#> Warning in deparse(x[[1L]]): NAs introduced by coercion to integer range
#> Warning in deparse(expr, width.cutoff, ...): NAs introduced by coercion to integer range
#> Warning in paste(deparse(expr, width.cutoff, ...), collapse = collapse): NAs introduced by coercion to integer range
#> Warning in deparse(x[[1L]]): NAs introduced by coercion to integer range
#> Warning in deparse(expr, width.cutoff, ...): NAs introduced by coercion to integer range
#> Warning in paste(deparse(expr, width.cutoff, ...), collapse = collapse): NAs introduced by coercion to integer range
#> Warning in paste0("igraph::", x): NAs introduced by coercion to integer range
#> Warning in paste(args, collapse = ""): NAs introduced by coercion to integer range
#> Warning in paste0(msg, "\n"): NAs introduced by coercion to integer range
#> computing bipartite partitions
#> Warning in paste0("igraph::", x): NAs introduced by coercion to integer range
#> Warning in paste0("igraph::", x): NAs introduced by coercion to integer range
table(partition)
#> partition
#> 1
#> 32
The Leiden algorithm also supports Bipartite graphs in igraph objects. Here the type attributes are passed from igraph.
partition <- leiden(bipartite_graph, partition_type = "CPMVertexPartition.Bipartite", resolution_parameter = 0.2, seed = 42)
table(partition)
#> partition
#> 1 2
#> 17 15
Here we can see partitions in the plotted results. The nodes that are more interconnected have been partitioned into separate clusters. Note that these do not correspond to Bipartite “types” as these are accounted for.
library("RColorBrewer")
node.cols <- brewer.pal(max(c(3, partition)),"Pastel1")[partition]
plot(bipartite_graph, vertex.color = node.cols, layout = layout.kamada.kawai)
The Modularity Vertex Partition is also supported.
partition <- leiden(bipartite_graph, partition_type = "ModularityVertexPartition.Bipartite", resolution_parameter = 0.02, seed = 42)
table(partition)
#> partition
#> 1 2 3 4 5 6 7
#> 9 6 3 4 4 4 2
Here we can see partitions in the plotted results are different to as those computed above.
library("RColorBrewer")
node.cols <- brewer.pal(max(c(3, partition)),"Pastel1")[partition]
plot(bipartite_graph, vertex.color = node.cols, layout = layout.kamada.kawai)
Reducing the resolution parameter gives similar results to previously with the CPM vertex partition. Note that very low resolution values are typical for this cost function.
partition <- leiden(bipartite_graph, partition_type = "ModularityVertexPartition.Bipartite", resolution_parameter = 0.005, seed = 42)
table(partition)
#> partition
#> 1 2
#> 17 15
Here we can see partitions in the plotted results are the same as those computed above.
library("RColorBrewer")
node.cols <- brewer.pal(max(c(3, partition)),"Pastel1")[partition]
plot(bipartite_graph, vertex.color = node.cols, layout = layout.kamada.kawai)
The resolution
max_comm_size` parameter applies on bipartite graphs to fine-tuning the size of clusters detected.
partition <- leiden(bipartite_graph, partition_type = "ModularityVertexPartition.Bipartite", max_comm_size = 6, resolution_parameter = 0.025, seed = 42)
table(partition)
#> partition
#> 1 2 3 4 5 6 7 8 9 10
#> 6 5 4 4 4 3 3 1 1 1
Here we can see partitions in the plotted results are contain many smaller clusters.
library("RColorBrewer")
node.cols <- brewer.pal(max(c(11, partition)),"Pastel1")[partition]
plot(bipartite_graph, vertex.color = node.cols, layout = layout.kamada.kawai)
The CPM vertex partition when degree as node size is TRUE
is equivalent to the Modularity cost function.
partition <- leiden(bipartite_graph, partition_type = "CPMVertexPartition.Bipartite", resolution_parameter = 0.02, seed = 42,
degree_as_node_size = TRUE)
table(partition)
#> partition
#> 1 2 3 4 5 6 7
#> 9 6 3 4 4 4 2
Here we can see partitions in the plotted results are the same as those computed above.
library("RColorBrewer")
node.cols <- brewer.pal(max(c(3, partition)),"Pastel1")[partition]
plot(bipartite_graph, vertex.color = node.cols, layout = layout.kamada.kawai)