lmeresampler: Bootstrap Methods for Nested Linear Mixed-Effects Models
Bootstrap routines for nested linear mixed effects models fit using
either 'lme4' or 'nlme'. The provided 'bootstrap()' function implements the
parametric, residual, cases, random effect block (REB), and wild bootstrap
procedures. An overview of these procedures can be found
in Van der Leeden et al. (2008) <doi:10.1007/978-0-387-73186-5_11>,
Carpenter, Goldstein & Rasbash (2003) <doi:10.1111/1467-9876.00415>,
and Chambers & Chandra (2013) <doi:10.1080/10618600.2012.681216>.
Version: |
0.2.4 |
Depends: |
R (≥ 3.5.0) |
Imports: |
dplyr (≥ 0.8.0), Matrix, nlmeU, ggplot2, ggdist, HLMdiag, purrr, forcats, stats, statmod, tidyr, magrittr, tibble |
Suggests: |
lme4 (≥ 1.1-7), nlme, testthat, mlmRev, knitr, rmarkdown, doParallel, foreach |
Published: |
2023-02-11 |
DOI: |
10.32614/CRAN.package.lmeresampler |
Author: |
Adam Loy [aut,
cre],
Spenser Steele [aut],
Jenna Korobova [aut] |
Maintainer: |
Adam Loy <loyad01 at gmail.com> |
BugReports: |
https://github.com/aloy/lmeresampler/issues |
License: |
GPL-3 |
URL: |
https://github.com/aloy/lmeresampler |
NeedsCompilation: |
no |
Materials: |
README NEWS |
In views: |
MixedModels |
CRAN checks: |
lmeresampler results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=lmeresampler
to link to this page.