This package provides three R2s for statistical models with correlated errors including classes: ‘lmerMod’ (LMM), ‘glmerMod’ (GLMM), ‘phylolm’ (Phylogenetic GLS), and ‘binaryPGLMM/phyloglm/communityPGLMM’ (Phylogenetic Logistic Regression). Detailed technical descriptions can be found in Ives 2018.
This package can be installed with:
install.packages("rr2")
# or install the latest version
# install.packages("devtools")
::install_github("arives/rr2") devtools
This package has three main functions: R2.resid()
,
R2.lik()
, and R2.pred()
. You can use them
individually in the form of, e.g., R2.resid(mod, mod.r)
where mod
is the full model and mod.r
is the
reduced model for partial R2s. If you do not include the reduced model
mod.r
, then the appropriate model with just the intercept
is used to give the total R2. When using
R2.resid
and R2.pred
with PGLS, you need to
include the phylo object containing a phylogenetic tree, e.g.,
R2.resid(mod, mod.r, phy = phy)
.
You can calculate all three R2s at the same time with
R2(mod, mod.r)
. You can also specify which R2(s)
to calculate within this function by turning off unwanted methods, e.g.,
R2(mod, mod.r, resid = FALSE)
or
R2(mod, mod.r, pred = FALSE)
.
This package also has some helper functions such as
inv.logit()
, partialR2()
, and
partialR2adj()
.
Models | Available.R2s |
---|---|
LM | partialR2, partialR2adj |
LM | R2.pred, R2.resid, R2.lik |
GLM | R2.pred, R2.resid, R2.lik |
LMM: lmerMod | R2.pred, R2.resid, R2.lik |
GLMM: glmerMod | R2.pred, R2.resid, R2.lik |
PGLS: phylolm | R2.pred, R2.resid, R2.lik |
PGLMM: binaryPGLMM | R2.pred, R2.resid, ——- |
PGLMM: phyloglm | ——-, ——–, R2.lik |
PGLMM: communityPGLMM (gaussian) | R2.pred, ——–, R2.lik |
PGLMM: communityPGLMM (binomial) | R2.pred, ——–, ——- |
First, let’s simulate data that will be used to fit various models.
# data
set.seed(123)
<- 10; nsample <- 10; n <- p1 * nsample
p1 <- data.frame(x1 = rnorm(n = n),
d x2 = rnorm(n = n),
u1 = rep(1:p1, each = nsample),
u2 = rep(1:p1, times = nsample))
$u1 <- as.factor(d$u1); d$u2 <- as.factor(d$u2)
d
# LMM: y with random intercept
<- 1; b2 <- -1; sd1 <- 1.5
b1 $y_re_intercept <- b1 * d$x1 + b2 * d$x2 +
drep(rnorm(n = p1, sd = sd1), each = nsample) + # random intercept u1
rep(rnorm(n = p1, sd = sd1), times = nsample) + # random intercept u2
rnorm(n = n)
# LMM: y with random slope
<- 0; sd1 <- 1; sd.x1 <- 2
b1 $y_re_slope <- b1 * d$x1 +
drep(rnorm(n = p1, sd = sd1), each = nsample) + # random intercept u1
$x1 * rep(rnorm(n = p1, sd = sd.x1), times = nsample) + # random slope u1
drnorm(n = n)
# GLMM
<- 1; sd1 <- 1.5
b1 <- rr2::inv.logit(b1 * d$x1 + rep(rnorm(n = p1, sd = sd1), each = nsample))
prob # random intercept u1
$y_binary <- rbinom(n = n, size = 1, prob = prob)
d
# PGLS
<- 1.5; signal <- 0.7
b1 <- ape::compute.brlen(ape::rtree(n = n), method = "Grafen", power = 1)
phy <- ape::compute.brlen(phy, method = "Grafen", power = .0001)
phy.x <- ape::rTraitCont(phy.x, model = "BM", sigma = 1)
x_trait <- signal^0.5 * ape::rTraitCont(phy, model = "BM", sigma = 1) + (1-signal)^0.5 * rnorm(n=n)
e $x_trait <- x_trait[match(names(e), names(x_trait))]
d$y_pgls <- b1 * x_trait + e
drownames(d) <- phy$tip.label
# Phylogenetic Logistic Regression
<- 1.5; signal <- 2
b1 <- signal * ape::rTraitCont(phy, model = "BM", sigma = 1)
e <- e[match(phy$tip.label, names(e))]
e $y_phy_binary <- rbinom(n = n, size = 1, prob = rr2::inv.logit(b1 * d$x1 + e))
d
head(d)
## x1 x2 u1 u2 y_re_intercept y_re_slope y_binary x_trait
## t58 -0.56047565 -0.71040656 1 1 3.053041 -0.2790159 1 0.1565416
## t7 -0.23017749 0.25688371 1 2 3.794671 1.7435372 0 0.5308967
## t34 1.55870831 -0.24669188 1 3 8.062178 -0.3410566 1 1.3797080
## t31 0.07050839 -0.34754260 1 4 3.649759 0.5076822 0 -1.9627510
## t82 0.12928774 -0.95161857 1 5 2.526704 0.2830316 0 1.7114132
## t18 1.71506499 -0.04502772 1 6 7.631604 -8.5551981 0 0.4814764
## y_pgls y_phy_binary
## t58 1.592177 0
## t7 1.888804 0
## t34 4.089835 0
## t31 -2.756382 0
## t82 3.744752 0
## t18 1.100467 1
Then, let’s fit some models and calculate their R2s.
library(rr2)
<- lm(y_re_intercept ~ x1 + x2, data = d)
z.f.lm <- lm(y_re_intercept ~ x1, data = d)
z.x.lm 0.lm <- lm(y_re_intercept ~ 1, data = d)
z.
R2(mod = z.f.lm, mod.r = z.x.lm)
## R2_lik R2_resid R2_pred
## 0.2473776 0.2473776 0.2473776
partialR2(mod = z.f.lm, mod.r = z.x.lm)
## [1] 0.2473776
partialR2adj(mod = z.f.lm, mod.r = z.x.lm)
## $R2
## [1] 0.2473776
##
## $R2.adj
## [1] 0.4982517
<- lme4::lmer(y_re_intercept ~ x1 + x2 + (1 | u1) + (1 | u2), data = d, REML = F)
z.f.lmm <- lme4::lmer(y_re_intercept ~ x1 + (1 | u1) + (1 | u2), data = d, REML = F)
z.x.lmm <- lme4::lmer(y_re_intercept ~ 1 + (1 | u2), data = d, REML = F)
z.v.lmm 0.lmm <- lm(y_re_intercept ~ 1, data = d)
z.
R2(mod = z.f.lmm, mod.r = z.x.lmm)
## R2_lik R2_resid R2_pred
## 0.5356524 0.6036312 0.6087728
R2(mod = z.f.lmm, mod.r = z.v.lmm)
## R2_lik R2_resid R2_pred
## 0.7441745 0.8373348 0.8559029
R2(mod = z.f.lmm, mod.r = z.0.lmm)
## R2_lik R2_resid R2_pred
## 0.7762978 0.8767789 0.8991618
R2(mod = z.f.lmm) # if omit mod.r, default will be the simplest model, such as z.0.lmm here.
## R2_lik R2_resid R2_pred
## 0.7762978 0.8767789 0.8991618
<- lme4::glmer(y_binary ~ x1 + (1 | u1), data = d, family = "binomial")
z.f.glmm <- lme4::glmer(y_binary ~ 1 + (1 | u1), data = d, family = "binomial")
z.x.glmm <- glm(y_binary ~ x1, data = d, family = "binomial")
z.v.glmm
R2(mod = z.f.glmm, mod.r = z.x.glmm)
## R2_lik R2_resid R2_pred
## 0.1170588 0.1413693 0.1373521
R2(mod = z.f.glmm, mod.r = z.v.glmm)
## R2_lik R2_resid R2_pred
## 0.1990563 0.3404476 0.3545240
R2(mod = z.f.glmm)
## R2_lik R2_resid R2_pred
## 0.2406380 0.3659939 0.3792381
# specify sigma2_d for R2.resid()
R2.resid(mod = z.f.glmm, mod.r = z.v.glmm, sigma2_d = "s2w")
## [1] 0.3404476
R2.resid(mod = z.f.glmm, mod.r = z.v.glmm, sigma2_d = "NS")
## [1] 0.4246935
R2.resid(mod = z.f.glmm, mod.r = z.v.glmm, sigma2_d = "rNS")
## [1] 0.4553596
<- phylolm::phylolm(y_pgls ~ x_trait, phy = phy, data = d, model = "lambda")
z.f.pgls <- lm(y_pgls ~ x_trait, data = d)
z.v.lm
# phy is needed for phylogenetic models' R2.resid and R2.pred
R2(mod = z.f.pgls, mod.r = z.v.lm, phy = phy)
## R2_lik R2_resid R2_pred
## 0.3826794 0.4854626 0.4599149
R2(mod = z.f.pgls, phy = phy)
## R2_lik R2_resid R2_pred
## 0.8825674 0.9021198 0.8972599
# This also works for models fit with nlme::gls()
<- nlme::gls(y_pgls ~ x_trait, data = d, correlation = ape::corPagel(1, phy), method = "ML") z.f.gls
## Warning in Initialize.corPhyl(X[[i]], ...): No covariate specified, species
## will be taken as ordered in the data frame. To avoid this message, specify a
## covariate containing the species names with the 'form' argument.
<- nlme::gls(y_pgls ~ 1, data = d, correlation = ape::corPagel(1, phy), method = "ML") z.x.gls
## Warning in Initialize.corPhyl(X[[i]], ...): No covariate specified, species
## will be taken as ordered in the data frame. To avoid this message, specify a
## covariate containing the species names with the 'form' argument.
R2(mod = z.f.gls, mod.r = z.v.lm)
## R2_lik R2_resid R2_pred
## 0.3826794 0.4854591 0.4599150
R2(mod = z.f.gls)
## R2_lik R2_resid R2_pred
## 0.8825674 0.9021191 0.8972599
Note: we modified ape::binaryPGLMM
to return
necessary components for rr2::R2()
.
<- rr2::binaryPGLMM(y_phy_binary ~ x1, data = d, phy = phy)
z.f.plog <- rr2::binaryPGLMM(y_phy_binary ~ 1, data = d, phy = phy)
z.x.plog <- glm(y_phy_binary ~ x1, data = d, family = "binomial")
z.v.plog
# R2.lik can't be used with binaryPGLMM because it is not a ML method
R2(mod = z.f.plog, mod.r = z.x.plog)
## Models of class binaryPGLMM do not have R2.lik method.
## R2_resid R2_pred
## 0.06547002 0.16402212
R2(mod = z.f.plog)
## Models of class binaryPGLMM do not have R2.lik method.
## R2_resid R2_pred
## 0.4538734 0.4831391
<- phylolm::phyloglm(y_phy_binary ~ x1, data = d, start.alpha = 1, phy = phy)
z.f.plog2 <- phylolm::phyloglm(y_phy_binary ~ 1, data = d, phy = phy,
z.x.plog2 start.alpha = min(20, z.f.plog2$alpha))
<- glm(y_phy_binary ~ x1, data = d, family = "binomial")
z.v.plog2
# R2.resid and R2.pred do not apply for phyloglm
R2(z.f.plog2, z.x.plog2)
## Models of class phyloglm only have R2.lik method.
## R2_lik
## 0.2596424
# alternate
R2.lik(z.f.plog2, z.x.plog2)
## [1] 0.2596424
We can use rr2::R2()
to calculate partial R2s
and compare contributions of different predictors. Here is an example
using phylolm::phyloglm()
. The same comparisons can be also
applied to other types of models.
<- phylolm::phyloglm(y_phy_binary ~ x1 + x2, data = d, start.alpha = 1, phy = phy)
z.f <- phylolm::phyloglm(y_phy_binary ~ x1, data = d, start.alpha = 1, phy = phy)
z.r1 <- phylolm::phyloglm(y_phy_binary ~ x2, data = d, start.alpha = 1, phy = phy)
z.r2 # total R2
R2(z.f)
## Models of class phyloglm only have R2.lik method.
## R2_lik
## 0.2914438
# contribution of x1
R2(z.f, z.r2)
## Models of class phyloglm only have R2.lik method.
## R2_lik
## 0.2390317
# contribution of x2
R2(z.f, z.r1)
## Models of class phyloglm only have R2.lik method.
## R2_lik
## 0.01310165
It is also possible to estimate the “contribution” of correlation structrues in the model. For the above example, we can replace the phylogeny with a star phylogeny and then compare the R2s of the two models.
# see the first chunk R code for the build of phy.x, a star phylogeny
<- phylolm::phyloglm(y_phy_binary ~ x1 + x2, data = d, start.alpha = 1, phy = phy.x)
z.r3 R2(z.f, z.r3)
## Models of class phyloglm only have R2.lik method.
## R2_lik
## 0.08364779
Please cite the following papers if you find this package useful:
- Anthony R. Ives. 2018. R2s for Correlated Data: Phylogenetic Models, LMMs, and GLMMs. Systematic Biology, Volume 68, Issue 2, March 2019, Pages 234-251.
- Anthony R. Ives and Daijiang Li (2018). rr2: An R package to calculate R^2s for regression models. The Journal of Open Source Software, 3(30), 1028.
Contributions are welcome. You can either provide comments and feedback by filing an issue on Github here or making pull requests. It may be easier if you first open an issue outlining what you will do in the pull request.
Questions about the package can also be posted as issues on Github.