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Summary: rtrim is an r-package for the analysis of Ɵme series of counts of animal populaƟons
with missing observaƟons. The package contains funcƟons to esƟmate indices and trends and
to asses the effects of covariates on these indices and trends. This report describes, in some
detail, the staƟsƟcal methods and models implemented in this package.
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1 Introduction

The package rtrim (Bogaart, van der Loo and Pannekoek, 2016) is developed for the analysis of
count data obtained from monitoring animal populaƟons. Such monitoring projects typically
involve a large number of sites that are surveyed annually, seasonally or monthly during some
period of Ɵme. One of the principal objecƟves of monitoring is to assess between-year changes
in abundance of the species under study. These changes are usually represented as indices, using
(usually) the first year as a base year.

In pracƟce, this kind of data oŌen contains many missing values. This hampers the usefulness of
index numbers because index numbers calculated on incomplete data will not only reflect
between year changes but changes in the paƩern of missing values as well. By the use of models
that make assumpƟons about the structure of the counts, it is possible to obtain beƩer esƟmates
of the indices. The idea is to esƟmate a model using the observed counts and then to use this
model to predict the missing counts. Indices can then be calculated on the basis of a completed
data set with the predicted counts replacing the missing counts. The package rtrim implements
a variety of loglinear models for this purpose.

The purpose of these models is not only to produce esƟmates of annual indices but also to
invesƟgate trends in these indices: is the abundance of a certain species increasing or decreasing
over Ɵme. These trends need not be constant over Ɵme, allowing conclusions like “the
development over Ɵme can be described by an annual increase of x% from 1980 up to 1988, no
change between 1988 and 1993 and an annual decrease of y% from 1993 onwards”. TRIM also
includes models that allow for effects of covariates on the trends and indices. Apart from leading
to improved esƟmates of annual indices, covariates are also important for invesƟgaƟng, for
instance, whether or not environmental factors such as acidificaƟon or polluƟon have an impact
on the trends.

A problem in monitoring programmes is the oversampling of parƟcular areas and the
undersampling of others. Especially when many volunteers are involved, the more natural areas
like dunes, heathland and marshes might be overrepresented whereas urban areas and farmland
are underrepresented. This hinders the assessment of naƟonal figures because the changes are
not necessarily similar in all area types. This situaƟon can be remedied by the use of weights that
can counter the effects of over- and undersampling.

In the applicaƟon of loglinear models to the kind of data considered here, there are some
staƟsƟcal complicaƟons to deal with. First, the usual (maximum likelihood) approach to
esƟmaƟon and tesƟng procedures for count data are based on the assumpƟon of independent
Poisson distribuƟons (or a mulƟnomial distribuƟon) for the counts. Such an assumpƟon is likely
to be violated for counts of animals because the variance is oŌen larger than expected for a
Poisson distribuƟon (overdispersion), especially when they occur in colonies. Furthermore, the
counts are oŌen not independently distributed because the counts in a parƟcular year will also
depend on the counts in the year before (serial correlaƟon). Therefore, rtrim uses staƟsƟcal
procedures for esƟmaƟon and tesƟng that take these two phenomena into account. Second, the
usual algorithms for esƟmaƟng loglinear models are not pracƟcal for the large number of
parameters in our models (since there is a parameter for each site the total number of
parameters is larger than the number of sites which can be several hundreds). This complicaƟon
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is dealt with by an algorithm that is tailor made for the applicaƟons discussed here and is much
faster and requires much less memory than the usual approach.

The remaining of this report consists of the following two main secƟons:

Models and staƟsƟcs This secƟon gives an overview of the models and methods implemented
in rtrim to analyse trends and esƟmate indices. These models belong to the class of loglinear
models and, although this secƟon is self-contained, some background in loglinear analysis will be
helpful in understanding the models described here. General introducƟons to the theory and
pracƟce of analysing count data by loglinear models can be found in standard text books such as
AgresƟ (1990, chapter 5), McCullagh and Nelder (1989, chapter 6), chapter 6 or Fienberg (1977).
ApplicaƟon of loglinear models to the analysis of monitoring data, also referred to as “Poisson
regression”, has been discussed by ter Braak et al. (1994), Thomas (1996) and Weinreich and
Oude Voshaar (1992). This secƟon also summarizes the test-staƟsƟcs implemented in rtrim,
including goodness-of-fit tests for the models and Wald-tests for the significance of specific
parameters.

Details of esƟmaƟon and computaƟon This secƟon provides a more technical descripƟon of
the esƟmaƟon methods and the algorithms involved as well as more details of the calculaƟon of
the summary staƟsƟcs and parameter transformaƟons that can (opƟonally) be produced by
rtrim.

CBS | Discussion paper | July 2018 5



2 Models and statistics

2.1 Terminology

Observed counts and missing counts The data for which the package rtrim is developed are
counts obtained from a number of sites at a number of years (or any equi-distant Ɵme points),
and opƟonally months (or any other season) within these years or Ɵme point. In what follows,
we will, without loss of generality, speak of ‘years’ and ‘months’. In case of annual data, the
count or frequency in site 𝑖 at year 𝑗 will be denoted by 𝑓 (𝑖 = 1… 𝐼, 𝑗 = 1… 𝐽) with 𝐼 the total
number of sites and 𝐽 the total number of years. There will usually not be observaƟons 𝑓 for
every combinaƟon of site and year and the unobserved counts are called missing counts. In case
of monthly (or any other type of higher frequency) data, we will have observed frequencies 𝑓
(𝑚 = 1…𝑀) with𝑀 the number of months.

To cover cases with and without monthly observaƟons, we will use the notaƟon 𝑖𝑗(𝑚) to denote
both 𝑖𝑗, in case of yearly observaƟons, and 𝑖𝑗𝑚 in case of monthly observaƟons.

Expected and esƟmated counts The counts are viewed as random variables. The expected
counts are the expected values of the counts. The models, to be discussed in the next subsecƟon,
express the expected counts as a funcƟon of site-effects and Ɵme-effects (or, site-parameters
and Ɵme-parameters). In many cases it will be possible to esƟmate the model parameters and
hence to calculate an esƟmated (or predicted) expected count for every combinaƟon of 𝑖 and 𝑗
(and opƟonally𝑚) even with a substanƟal number of missing counts. This depends however on
the model type and the paƩern of missing values. In general, complicated models with many
parameters can only be esƟmated if the data are not too sparse (the number of missing data is
not too large), and simple, but perhaps not very realisƟc, models can be esƟmated even with
very sparse data. rtrim will inform you if a chosen model cannot be esƟmated because the data
are too sparse. In the following, expected counts will be denoted by 𝜇(), and esƟmated
expected counts (also be called esƟmated counts) will be denoted by �̂�().

Imputed counts The count aŌer imputaƟon (imputed count) for a Site by Time combinaƟon,
denoted by 𝑓ା(), equals the observed count if an observaƟon is made and equals the esƟmated
count �̂�() if an observaƟon is missing, i.e.,

𝑓ା() = ൝𝑓() if 𝑓() availabe (observed),
�̂�() otherwise.

Observed, model based and imputed Ɵme-total For year 𝑗, the observed total is
𝑓ା = ∑∈obs 𝑓, where the notaƟon 𝑖 ∈ obs denotes that summaƟon is over available (observed)
𝑓 only. Similarly, themodel-based total is defined as 𝜇ା = ∑ 𝜇, and the imputed total as
𝑓ାା = ∑ 𝑓ା .

Similarly, for monthly observaƟons, we define 𝑓ାା = ∑,∈obs 𝑓, 𝜇ାା = ∑ 𝜇, and
𝑓ାାା = ∑,∈obs 𝑓ା
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Model based and imputed index values An annual index value, index for short, describes the
increase or decrease of a species aggregates over all sites, relaƟve to some specific reference
year or Ɵme period. Index values are computed as the total for a specific year, divided by the
total for a specified reference year or period. Usually, for these indices, the first year of a Ɵme
series is used as the reference year, but it is possible to select any other year to serve as
reference. For the exposiƟon in most of the remainder of this report it is assumed, however, that
the first Ɵme-point is the base Ɵme-point. The model based indices are indices calculated from
the model based totals and the imputed indices are indices calculated from the imputed totals.

2.2 Models

This secƟon gives a brief descripƟon of the models that are used in rtrim to analyse trends and
esƟmate indices. These models belong to the class of loglinear models. Loglinear models are
linear models for the logarithm of expected counts in conƟngency tables (in our case the
two-way Site by Time table).

Because rtrimmodels for monthly data sets are expressed as a mixture of models for yearly
data, first the ‘yearly’ models will be presented, and then the corresponding ‘monthly’ models.

2.2.1 Model 1: no time-effects
A very simple, base-line, model for ln 𝜇 is:

ln 𝜇 = 𝛼 , (1)

with 𝛼 the effect for site 𝑖. For the expected counts under this model we have 𝜇() = exp(𝛼).
This “no Ɵme-effects” model implies that the counts vary only across sites and not across
Ɵme-points; the model based Ɵme-totals are thus equal for each Ɵme point and the model based
indices are all equal to one.

2.2.2 Model 2: Linear (switching) trend
A model with a site-effect and a linear (on the log-scale) effect of Ɵme can be wriƩen as

ln 𝜇 = 𝛼 + 𝛽(𝑗 − 1) (2a)

According to this model the ln 𝜇’s for each site 𝑖 are a linear funcƟon of 𝑗 with slope 𝛽; the log
expected count increases with an amount 𝛽 from one Ɵme-point to the next. Model (2a) can be
rewriƩen in mulƟplicaƟve form as:

𝜇 = 𝑎𝑏(ିଵ) = 𝑏𝜇,ିଵ (2b)

with 𝑎 = exp(𝛼) = 𝜇,ଵ and 𝑏 = exp(𝛽) This formulaƟon shows that for each site the expected
count at some Ɵme-point 𝑗 (𝑗 > 1) is a factor 𝑏 Ɵmes the expected count at the previous
Ɵme-point. For the model based Ɵme-totals we have 𝜇ା = 𝑏(ିଵ) ∑ 𝑎, and the model based
indices are 𝑏(ିଵ).

Model (2a) implies exponenƟal growth or decrease in the expected counts from each Ɵme point
to the next. Such a model may give an adequate descripƟon of short Ɵme series but will usually
become unrealisƟc if the Ɵme series get longer. A switching trend model allows the slope
parameter to change at some Ɵme points.
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For instance, a model with a slope 𝛽ଵ for Ɵme points 1 to 4, a slope 𝛽ଶ for Ɵme points 5 to 7 and a
slope 𝛽ଷ for Ɵme points beyond 7 is a switching trend model with two changes in slope, one at
Ɵme point 4 and one at Ɵme point 7. The Ɵme points (4 and 7 in this example) where the slope
parameter changes are called changepoints or knots and will be denoted by 𝑘, with 𝑙 = 1…𝐿
and 𝐿 the number of changepoints (𝑘ଵ = 4, 𝑘ଶ = 7 and 𝐿 = 2 in this example).

This model can be reformulated to encompass the no Ɵme-effects model (1) by seƫng the slope
to zero from the first Ɵme point up to the first changepoint, to 𝛽ଵ from the first to the second
changepoint and so on. The no Ɵme-effects model is then obtained if there are no changepoints
and the model in the example above is obtained if we set three changepoints: 𝑘ଵ = 1, 𝑘ଶ = 4
and 𝑘ଷ = 7. The linear trend model (2a) is obtained if there is a changepoint at the first
Ɵme-point only.

In this formulaƟon, the log expected counts for a model with 𝐿 changepoints can be wriƩen as

ln 𝜇, =

⎧
⎪

⎨
⎪
⎩

𝛼 for 1 ≤ 𝑗 ≤ 𝑘ଵ
𝛼 + 𝛽ଵ(𝑗 − 𝑘ଵ) for 𝑘ଵ ≤ 𝑗 ≤ 𝑘ଶ

⋮
𝛼 + 𝛽ଵ(𝑘ଶ − 𝑘ଵ) + 𝛽ଶ(𝑘ଷ − 𝑘ଶ) + ⋯ + 𝛽(𝑗 − 𝑘) for 𝑘 ≤ 𝑗 ≤ 𝑘ାଵ
𝛼 + 𝛽ଵ(𝑘ଶ − 𝑘ଵ) + 𝛽ଶ(𝑘ଷ − 𝑘ଶ) + ⋯ + 𝛽(𝑗 − 𝑘) for 𝑘 < 𝑗 ≤ 𝐽

So the log expected counts are constant (equal to 𝛼) for Ɵme points up to and including 𝑘ଵ. At
Ɵme point (𝑘ଵ + 1) the log expected count is 𝛼 + 𝛽ଵ. The increase between successive Ɵme
points (slope) remains 𝛽ଵ unƟl the next change point 𝑘ଶ is reached where the increase becomes
𝛽ଶ, and so on.

The equaƟons for the log expected counts can be comprised into a single equaƟon as follows:

ln 𝜇 = 𝛼 +



ୀଵ

(𝛽 − 𝛽ିଵ)(𝑗 − 𝑘)𝜅(𝑗, 𝑘), (3)

where 𝛽 = 0 and the funcƟon 𝜅(𝑗, 𝑘) is defined by

𝜅(𝑗, 𝑘) = ൝0 for 𝑗 ≤ 𝑘
1 for 𝑗 > 𝑘

2.2.3 Model 3: Effects for each time-point
An alternaƟve to describing the development in Ɵme with a (number of) linear trend(s) is to use
a model with separate parameters for each year. A model with effects for each site and each year
can be expressed as

ln 𝜇 = 𝛼 + 𝛾 (4)

with 𝛾 the effect for Ɵme 𝑗 on the log-expected counts. One restricƟon is needed to make the
parameters of this model idenƟfiable. In rtrim, the parameter 𝛾ଵ is set to zero. Model (4) can be
rewriƩen in mulƟplicaƟve form as:

𝜇 = 𝑎𝑐 (5)

with 𝑎 = exp(𝛼) = 𝜇,ଵ, 𝑐ଵ = exp(0) = 1 and 𝑐 = exp(𝛾). From (5) we have for the expected
total for Ɵme 𝑗: 𝜇ା = ∑ 𝜇 = 𝑐 ∑ 𝑎 and so the model based indices are idenƟcal to the
parameters 𝑐 (since 𝜇ା/𝜇ାଵ = 𝑐).
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The Ɵme parameters in model (4) can be decomposed in a linear trend parameter (𝛽∗ ) and
parameters (𝛾∗ ) describing the deviaƟons from this linear trend for each year. Such a
representaƟon makes it easy to invesƟgate for which years significant deviaƟons from the linear
trend occur (𝛾∗ different from zero). One way of obtaining such a decomposiƟon is by fiƫng a
linear regression line through the ln 𝜇 of model (4), see secƟon(4.2) for the details. This
reparameterizaƟon can be wriƩen as

ln 𝜇 = 𝛼∗ + 𝛽∗𝑑 + 𝛾∗ (6)

with 𝑑 equal to 𝑗 minus the average of the 𝑗’s, so 𝑑 = 𝑗 − ଵ
 ∑ 𝑗. The parameter 𝛼∗ is the

intercept and the parameter 𝛽∗ is the slope of the regression line through the ln 𝜇. The
parameters 𝛾∗ are the deviaƟons of the ln 𝜇 from this regression line. Note that (6) is just a
different version of (4) and (5), the expected counts and model based indices being the same for
all three representaƟons.

The model with Ɵme-point parameters is equivalent to a switching trend model when all
Ɵme-points (except the last) are changepoints. For the model with Ɵme-point parameters the
trend between Ɵme-points 𝑗 and 𝑗 + 1 is

ln 𝜇ାଵ − ln 𝜇 = 𝛾ାଵ − 𝛾 (7)

and for the equivalent switching trend model the trend is (compare (3))

ln 𝜇ାଵ − ln 𝜇 = 𝛽 (8)

and 𝛽ଵ = 𝛾ଶ, since 𝛾ଵ = 0.

So, the switching trend model (3) is a more general model than the Ɵme-effects model (4) since it
includes this last model as a special case.

2.2.4 Extendedmodel formulations for monthly data
In case monthly data are used, i.e. 𝑓 instead of 𝑓, models 1, 2, and 3 are extended to include
month effects, denoted by addiƟonal parameters 𝛿 (for month𝑚). In all cases, month effects
are expressed similar to how year effects are expressed in Model 3, and the extended model
definiƟons now read

ln 𝜇 = 𝛼 + 𝛿 (9)

ln 𝜇 = 𝛼 + 𝛽(𝑗 − 1) + 𝛿 (10)

ln 𝜇 = 𝛼 + 𝛾 + 𝛿 (11)

or similar, for models 1, 2 and 3, respecƟvely (note that the example given here applies to the
simplest version of model 2, .i.e. Eqn (2a), but can be applied to the more generic version Eqn (3)
as well). As with 𝛾 parameters, 𝛿ଵ ≡ 0.

2.3 Effects of categorical covariates on the trend

Both model 2 and model 3 are restricƟve in the sense that the Ɵme related parameters (𝛽, 𝛾 and
𝛿) are assumed to be the same for each site. By the use of covariates, this assumpƟon can be
relaxed and the models can be improved. The rtrim package accomodates addiƟve effects of
categorical covariates on trends and Ɵme-point parameters. For this purpose, dummy-variables
are created for the categories of each covariate. Since one of the dummies is redundant, the
dummy variable for the first category of each covariate is omiƩed. The values of these dummy
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variables are denoted by 𝑧(), (𝑘 = 1…𝐾) with 𝐾 the sum of the numbers of categories of
the covariates minus the number of covariates.

An extension of the simple linear trend model (2a) that allows for addiƟve effects of 𝐾 covariates
on the slope parameter is

ln 𝜇 = 𝛼 + (𝛽 +



ୀଵ

𝑧𝛽)(𝑗 − 1) (12)

so that the slope of the linear trend for site 𝑖 and year 𝑗 consists of a for all 𝑖 and 𝑗 common
component 𝛽 (which is the slope parameter for site by Ɵme combinaƟons belonging to the first
categories of all covariates) plus a component that is the sum of the effects of the categories to
which site 𝑖 belongs at Ɵme 𝑗. Note that the values of covariates can vary not only across sites
but also across Ɵme points. This allows for the possibility that, for instance, a site is classified as
‘wood’ at some point in Ɵme but as ‘farmland’ at another point in Ɵme. A switching trend model
with effects of covariates on each of the slope parameters is obtained similarly by replacing 𝛽 in
(3) with 𝛽 + ∑

ୀଵ 𝑧𝛽.

An extension of model 3 that allows for addiƟve effects of categorical covariates on the
Ɵme-effects is:

ln 𝜇 = 𝛼 + 𝛾 +



ୀଵ

𝑧𝛾 (13)

The effect of Ɵme 𝑗 at site 𝑖 now consists of a for all sites common component 𝛾 (which is the
Ɵme-effect for Ɵme 𝑗 for sites belonging to the first categories of all covariates) plus an effect
∑ 𝑧𝛾, that is specific for the combinaƟon of categories of the covariates.

Above formulaƟons, which are given here for yearly observaƟons only, can be extended for
monthly observaƟons by inclusion of categorial month effects, similar to the year effects (13)

ln 𝜇 = …+ 𝛿 +



ୀଵ

𝑧𝛿 (14)

2.4 Changepoints and model estimability

In many cases, users want make as few assumpƟons as possible regarding actual trend changes,
and therefore would like to use model 3 or, equivalently, a ‘maximal’ model 2, where each Ɵme
point is treated as a change point. However, not in all cases will there be sufficient observaƟons
to esƟmate the corresponding model parameters. A single year without any observaƟons is one
simple example.

In applicaƟons it will oŌen be the case that a switching trend or Ɵme-parameters model with
covariates cannot be esƟmated owing to a lack of observaƟons. For the Ɵme-parameters model
to be esƟmable, it is necessary that for each Ɵme-point there are observaƟons for each category
of each covariate. For the switching trend model to be esƟmable it is necessary that for each
Ɵme-interval between two adjacent changepoints (Ɵme-points 𝑗 for which 𝑘 < 𝑗 ≤ 𝑘ାଵ) there
is at least one observaƟon for each category of each covariate. rtrim checks these condiƟons
and, if necessary, an error message will be issued indicaƟng for which Ɵme-interval (Ɵme-point)
and covariate category there are no observaƟons.
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An other opƟon is, for the switching trend model, to automaƟcally delete changepoints such that
for the remaining Ɵme-intervals there are observaƟons for each category of each covariate. This
is accomplished by deleƟng the changepoint corresponding to the end point of the first
Ɵme-interval for which no observaƟons are available and then checking again, beginning with the
newly created interval.

Note that this procedure is aimed at the idenƟficaƟon of a ‘maximum’ set of change points, given
the amount of actual observaƟons. The alternaƟve is to idenƟfy a ‘minimal’, parsimonious,
model (a model with as few parameters as possible, without compromising the explanatory
power of the model). This can be carried out by a stepwise selecƟon of changepoints, explained
in SecƟon 4.1.

2.5 Overall trend

When covariates are used, trends and indices vary between sites and the models do not provide
a measure of the trend in the aggregated (over sites) Ɵme-counts. Although the between-sites
differences in trends will usually be of scienƟfic interest since they reflect the effects of
covariates on the trend, the trend in the aggregated Ɵme-counts will oŌen also be of interest
since this ‘overall trend’ reflects changes in the total populaƟon over Ɵme. A simple measure of
overall trend can be obtained as the ordinary least squares (ols) esƟmator of the slope
parameter, 𝛽ା say, of a linear regression line through the log esƟmated model-based Ɵme-totals,
ln �̂�ା. Thus, as the ols esƟmator �̂�ା of 𝛽ା in the expression

ln �̂�ା = 𝛼 + 𝛽ା(𝑗 − 1) + 𝜀 (15)

with 𝜀 the deviaƟon of the log esƟmated Ɵme-total for Ɵme 𝑗 from the linear trend.

To obtain expressions for the ols-esƟmators of the slope parameters, we introduce the following
notaƟon: 𝑿ଵ is a 𝐽-vector (a vector of length 𝐽) with all elements equal to 1, 𝑿ଶ a 𝐽-vector with
values 𝑗 − 1 (𝑗 = 1,… , 𝐽), 𝑿 = (𝑿ଵ, 𝑿ଶ) and 𝒚 a 𝐽-vector with values ln 𝜇ା. Then we have for
the ols-esƟmators for the intercept and slope in model (2.5):

�̂� = (𝛼, 𝛽ା)் = (𝑿்𝑿)ିଵ𝑿்y, (16)

It is important to note that the esƟmator �̂�ା of the overall slope is not viewed as an esƟmator of
a parameter of a model thought to have generated the ln �̂�ା’s but as a descripƟve staƟsƟc
highlighƟng one aspect (the linear trend) of the ln �̂�ା’s. The ln �̂�ା’s in (15) are esƟmates that
can have been derived from any of the models discussed before, and will not generally follow a
linear trend.

Although �̂�ା is defined by ols-regression, its variance is esƟmated in a way that is different from
the usual ols-regression approach. In line with the interpretaƟon of �̂�ା a summary staƟsƟc
(funcƟon) of the ln �̂�ା’s, esƟmator of its variance is obtained from the esƟmated covariance
matrix of the ln �̂�ା’s, which in turn is derived from the esƟmated covariance matrix of the
parameters of the model used to generate the ln �̂�ା’s (see, secƟon 5).
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2.6 Using weights

In some instances it is advisable to use cell weights to improve the esƟmates of naƟonal indices,
see van Strien et al. (1995) for an example. For instance, if sites from urban areas are
underrepresented relaƟve to sites from other areas, weights could be calculated such that the
weighted total surface of urban sites equals the populaƟon total surface of urban areas and the
weighted total surface of other areas also equals the corresponding populaƟon surface. Then,
assuming that the counts are proporƟonal to the surface of the sites, the counts can be
mulƟplied by these weights to obtain a beƩer representaƟon of the populaƟon counts. More
generally, weights can be determined such that the weighted total surface of sites of a certain
type at a certain point in Ɵme equals, or is proporƟonal to, the total populaƟon surface of sites of
that type. This kind of weighƟng can counter the effects of over- and undersampling and is easy
to incorporate in the loglinear modelling approach.

When weights are used, interest will be in models describing the weighted expected counts. If
the weights are denoted by 𝑤(), the expected value of the weighted counts will be
E[𝑤()𝑓()] = 𝑤()𝜇() since the weights are known constants. A model, for instance
model 3 (effects for each Ɵme-point), for the weighted expected counts can be wriƩen as

ln𝑤𝜇 = 𝛼 + 𝛾 , (17)

or

𝑤𝜇 = 𝑎𝑐 . (18)

This model implies for the unweighted expected counts

ln 𝜇 = 𝛼 + 𝛾 − ln𝑤 . (19)

The ln𝑤 are parameters that are known in advance. Such parameters are called an offset in the
terminology of generalized linear models (glm’s) (McCullagh and Nelder, 1989).

When weights are used, the model based indices are ∑ 𝑤𝜇/∑ 𝑤ଵ𝜇ଵ (assuming the first
Ɵme point is taken as reference). These indices will not change if the weights are mulƟplied by a
constant different from zero, but the model based totals for the Ɵme-points will change. If the
weights do not change over Ɵme we can write 𝑤 = 𝑤, with 𝑤 the common weight for all
Ɵme-points for site 𝑖. The indices for model (18) can then be expressed as
∑ 𝑤𝑎𝑐/∑ 𝑤𝑎 = 𝑐 showing that the indices are independent of the weights and the
weighted model based indices are equal to the unweighted model based indices. More generally,
weighted and unweighted model based indices are equal if the weights are equal for all
Ɵme-points and the Ɵme related parameters are the same for all sites. Thus, if 𝑤 = 𝑤, the
weighƟng does not affect the indices for models without covariates but does affect the indices if
covariates are used.

Weighted model based indices will be calculated using the weighted esƟmated counts and
weighted imputed indices will be calculated using the weighted observed counts 𝑤𝑓 if they
are available and the weighted esƟmated counts otherwise.

The weights as described in this subsecƟon are part of the model, they are mulƟplicaƟve factors
used to increase/decrease counts for site/Ɵme combinaƟons that are
underrepresented/overrepresented in the sample and do not change the variances of the
observaƟons. This specific type of weighƟng should not be confused with the weighƟng as
performed by esƟmaƟon methods such as weighted least squares or generalisaƟons thereof such
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as the iteraƟve weighted least squares algorithm used for generalised linear models. In such
procedures the observaƟons are weighted by the inverse of their variances and the weights are
part of the esƟmaƟon procedure but not of the model.

In case of monthly observaƟons, this reasoning does not change, and e.g. EquaƟons (17) and (19)
are wriƩen as

ln𝑤𝜇 = 𝛼 + 𝛾 + 𝛿 (20)

and

ln 𝜇 = 𝛼 + 𝛾 + 𝛿 − ln𝑤 . (21)

2.7 Estimation options

The usual approach to staƟsƟcal inference for loglinear models is to use maximum likelihood
(ML) esƟmaƟon and associated calculaƟons of standard errors and test staƟsƟcs. These
esƟmaƟon and tesƟng procedures are based on the assumpƟon of independent Poisson
distribuƟons (or a mulƟnomial distribuƟon) for the counts. Such an assumpƟon is likely to be
violated for counts of animals because the variance is oŌen larger than expected for a Poisson
distribuƟon (overdispersion), especially when they occur in colonies. Furthermore, the counts
are oŌen not independently distributed because the counts at a parƟcular point in Ɵme will
oŌen depend on the counts at the previous Ɵme-point (serial correlaƟon). The rtrim package
uses procedures for esƟmaƟon and tesƟng that take these two phenomena into account (a
Generalised EsƟmaƟng EquaƟons (GEE) approach, see secƟon 3.2 for details). This procedure is
based on the following assumpƟons for the variance of the counts and the correlaƟon between
the counts for adjacent Ɵme-points:

var(𝑓) = 𝜎ଶ𝜇 (22)

and

cor(𝑓 , 𝑓,ାଵ) = 𝜌 (23)

The parameter 𝜎ଶ is called a dispersion parameter. For 𝜎ଶ = 1, the variance of 𝑓 is equal to its
expectaƟon which is the variance under the Poisson assumpƟon. The parameter 𝜌 is the serial
correlaƟon parameter. The counts are independent if 𝜌 = 0. If both 𝜎ଶ = 1 and 𝜌 = 0, the
esƟmaƟon procedure used in rtrim is idenƟcal to the usual maximum likelihood approach. If
𝜎ଶ ≠ 1 and 𝜌 = 0, the esƟmates of parameters (and expected counts and indices) are equal to
the maximum likelihood esƟmates but the esƟmated standard errors and test staƟsƟcs will be
different. If 𝜌 ≠ 0 both the esƟmates of parameters and standard errors differ from the
maximum likelihood esƟmates. The difference between GEE and ML esƟmates of parameters is
usually small and tends to decrease as the counts increase. However, the corresponding
difference between esƟmated standard errors and test-staƟsƟcs need not be small nor decreases
when the counts become larger. So, allowing 𝜌 and 𝜎ଶ to be unequal to 0 and 1 respecƟvely, has
liƩle impact on the esƟmated parameters but can have important effects on standard errors. In
rtrim opƟons can be set that allow the user to specify whether overdispersion and/or serial
correlaƟon must be taken into account or not. If either of these opƟons is used esƟmates of 𝜎ଶ
and/or 𝜌 will be calculated and used in esƟmaƟon and tesƟng procedures.

In case of monthly observaƟons, overdispersion is allowed, and EquaƟon (22) is wriƩen as

var(𝑓) = 𝜎ଶ𝜇
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but serial correlaƟon is not considered (𝜌 ≡ 0) due to the complexiƟes associated with
intra-annual serial correlaƟons in species abundance.

2.8 Test-statistics

2.8.1 Model goodness-of-ϐit tests
The goodness-of-fit of loglinear models is generally tested by Pearson’s chi-squared staƟsƟc,
given by

𝜒ଶ = 
()

(𝑓() − �̂�())ଶ
�̂�()

(24)

or by the likelihood raƟo test given by

𝐿𝑅 = 2 
()

𝑓() lnቆ
𝑓()
𝜇()

ቇ (25)

where the summaƟon is over observed (𝑖, 𝑗) or (𝑖, 𝑗, 𝑚) only. For independent Poisson
observaƟons, both staƟsƟcs are asymptoƟcally 𝜒ଶఔ distributed, with 𝜈 the number of degrees of
freedom (equal to the number of observed counts minus the number of esƟmated parameters).
Models are rejected for large values of these staƟsƟcs and small values of the associated
significance probabiliƟes. These tests indicate how well the model describes the observed
counts.

The likelihood raƟo staƟsƟc can be used to test for the difference between nested models. That
is, if we have two models,𝑀ଵ with 𝑝 parameters and𝑀ଶ with the same 𝑝 parameters plus 𝑞
addiƟonal parameters, then𝑀ଵ is said to be nested within𝑀ଶ (𝑀ଵ can be obtained from𝑀ଶ by
seƫng the 𝑞 addiƟonal parameters of𝑀ଶ equal to zero). Now, model𝑀ଵ can be tested against
model𝑀ଶ by using the difference between the likelihood raƟo staƟsƟcs for the two models
(𝐿𝑅ଵିଶ = 𝐿𝑅ଵ − 𝐿𝑅ଶ, say) as test staƟsƟc. This difference is also a likelihood raƟo staƟsƟc and
therefore asymptoƟcally 𝜒ଶఔ distributed, with degrees of freedom 𝜈 equal to the difference in
degrees of freedom for the two models which is also equal to the number of addiƟonal
parameters 𝑞.

Another approach to comparing models is by the use of Akaike’s InformaƟon Criterion (AIC) (see,
e.g. McCullagh and Nelder (1989), page 91). For loglinear models this criterion can be expressed
as 𝐶 + 𝐿𝑅 − 2𝜈 where the constant 𝐶 is the same for all models for the same data set. According
to this approach, models with smaller values of AIC, or equivalently 𝐿𝑅 − 2𝜈, provide beƩer fits
than models with larger values. Contrary to comparing models by using the likelihood raƟo test
for the difference, comparing models on the basis of AIC-values is not restricted to nested
models.

If the counts are not (assumed to be) independent Poisson observaƟons and either 𝜎ଶ or 𝜌 is
esƟmated, the staƟsƟcs defined by (24) and (25) are not asymptoƟcally 𝜒ଶఔ distributed and the
associated significance probabiliƟes are incorrect. Also, the AIC cannot be used for comparing
models. However, Wald-tests (to be described below) can sƟll be used to test for the significance
of (groups of) parameters.
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2.8.2 Wald-tests for signiϐicance of parameters
A number of tests can be performed in rtrim to test for the significance of groups of
parameters. These so called Wald-tests are based on the esƟmated covariance matrix of the
parameters and since this covariance matrix takes the overdispersion and serial correlaƟon into
account (if specified), these tests are valid, not only if the counts are assumed to be independent
Poisson observaƟons but also if 𝜎ଶ and/or 𝜌 is esƟmated. The general form of the Wald-staƟsƟc
for tesƟng simultaneously whether several parameters are different from zero is

𝑊 = �̂�் ൣvar(�̂�)൧ିଵ �̂�,

with �̂� a vector containing the parameter esƟmates to be tested and 𝑣𝑎𝑟(�̂�) the covariance
matrix of �̂�.

The following Wald-tests can be performed in rtrim:

1. Test for the significance of the slope parameter (model 2).
2. Tests for the significance of changes in slope (model 2).
3. Test for the significance of the deviaƟons from a linear trend (model 3).
4. Tests for the significance of the effect of each covariate (models 2 and 3).

Wald-tests are asymptoƟcally 𝜒ଶఔ distributed, with the number of degrees of freedom equal to
the rank of the covariance matrix var(�̂�). The hypothesis that the tested parameters are zero is
rejected for large values of the test-staƟsƟc and small values of the associated significance
probabiliƟes (denoted by 𝑝), so parameters are significantly different from zero if 𝑝 is smaller
than some chosen significance level (customary choices are 0.01, 0.05 and 0.10)

In addiƟon to these tests the significance of each individual parameter can be tested by a 𝑡-test
e.g., a parameter is significantly (at the 0.05 significance level) different from zero if it exceeds
plus or minus 1.96 Ɵmes its standard error.

2.9 Equality of model based and imputed indices

For the model with parameters for each Ɵme point (model 3, i.e., without month effects), the
model-based and imputed indices are equal if 𝜌 = 0 and no weighƟng is used. This is explained
in this subsecƟon.

Model 3 (without covariates) is the model of independence in a two-way conƟngency table. It is
well known (e.g. Fienberg (1977, ch. 2) that if the parameters of this model are esƟmated by
maximum likelihood, the esƟmated expected counts saƟsfy


∈obs

�̂� = 
∈obs

𝑓 = 𝑓ା , (26)

where again the summaƟon is over observed (𝑖, 𝑗) only. Thus, the Ɵme-totals of the esƟmated
expected counts, where the summaƟon is over the observed cells only, are equal to the
Ɵme-totals of the observed counts (also summing over the observed cells only, of course). For
the imputed Ɵme-totals we then have



𝑓ା = 

∈obs
𝑓 +


�̂� − 

∈obs
�̂� = 𝑓ା + �̂�ା − 𝑓ା = �̂�ା (27)

So, the imputed Ɵme-totals are equal to the esƟmated model based Ɵme-totals and the imputed
and model based indices will both be equal to the esƟmates of the parameters 𝑐. This equality
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between imputed and model based indices holds also when covariates are used since then
equaliƟes analogous to (26) and (27) apply to the imputed and model based Ɵme-totals for each
group of sites sharing the same covariate values. Therefore, the imputed and model based
Ɵme-totals for all sites, obtained by adding the per group Ɵme totals, must also be equal.

Equality between imputed and model based indices also holds if 𝜎 ≠ 1 and 𝜌 = 0 because the
esƟmates of parameters (and expected counts) are then equal to the maximum likelihood
esƟmates (see secƟon 2.7) but the equality does not hold (in general) if either I) the model is not
the Ɵme-effects model or II) weighƟng is used or III) 𝜌 ≠ 0.
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3 Details of estimation and
computation

3.1 Matrix formulation

To facilitate the discussion of esƟmators for the model parameters, it is convenient to formulate
the models in matrix notaƟon. If we collect the expected frequencies in an 𝐼𝐽(𝑀)-vector
𝝁 = (𝜇ଵ,ଵ(,ଵ), … , 𝜇ூ,(,ெ)), all models can be wriƩen as

ln𝝁 = 𝑨𝜶 + 𝑩𝜷, (28)

with 𝜶 a vector of length 𝐼 containing the site-parameters and 𝜷 a vector containing the Ɵme
related parameters (which can be either all 𝛽 or 𝛾, augmented with all 𝛿 in case of monthly
data). 𝑨 and 𝑩 are dummy matrices for the site-effects and Ɵme-effects. For all models in rtrim,
𝜶 has length 𝑝 = 𝐼, and 𝑨 is an 𝐼𝐽(𝑀) × 𝐼-matrix with 𝐼 dummy-variables, one for each site. The
matrix 𝑩 and vector 𝜷 (of length 𝑝) are specific for each model.

The parameter vectors 𝜶 and 𝜷 can be combined to one vector 𝜽 = (𝜶் , 𝜷்)் and the design
matrices 𝑨 and 𝑩 can be combined to one 𝐼𝐽(𝑀) × 𝑝 design matrix 𝑿 = (𝑨,𝑩) with 𝑝 = 𝑝 + 𝑝
the total number of 𝜶 and 𝜷 parameters to esƟmate.

The model (28) can then be wriƩen as

ln𝝁 = 𝑿𝜽 (29)

and models for weighted counts can be specified as

ln diag(𝒘)𝝁 = 𝑿𝜽

or

ln𝝁 = 𝑿𝜽 − ln𝒘

with𝒘 an 𝐼𝐽(𝑀)-vector containing the cell weights and diag(𝒘) a diagonal matrix with𝒘 on the
diagonal.

3.2 Generalized estimating equations

The esƟmaƟon method used in rtrim is based on generalized esƟmaƟng equaƟons (GEE) see,
Liang and Zeger (1986), Zeger and Liang (1986), McCullagh and Nelder (1989), chapter 9.
Contrary to maximum-likelihood (ML) this method doesn’t require the distribuƟon of the
observaƟons to be specified in full. The specificaƟon (up to some unknown parameters) of the
first two moments (expectaƟon and covariance matrix) is sufficient. This makes it relaƟvely easy
to take overdispersion and serial correlaƟon into account. Furthermore, the GEE approach to
esƟmaƟng loglinear models reduces to the usual maximum likelihood approach if the covariance
matrix of the observaƟons equals the covariance matrix of independent Poisson observaƟons
(𝜎ଶ = 1 and 𝜌 = 0).

For esƟmaƟng the parameters only the observed counts can be used and therefore, in this
subsecƟon, the vector 𝒇 refers to the 𝑂-vector (𝑂 ≤ 𝐼𝐽(𝑀)) with observed counts only and
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similarly the rows of the matrices 𝑿, 𝑨 and 𝑩 corresponding with missing counts are deleted
such that the dimensions of these matrices are now 𝑂 × 𝑝, 𝑂 × 𝑝 and 𝑂 × 𝑝, respecƟvely.

Given the values of the parameters in the covariance matrix, the GEE esƟmator �̂� for 𝜽 is the
soluƟon of the esƟmaƟng equaƟon

𝑼(�̂�) = 𝑫்𝑽ିଵ(𝒇 − 𝝁) = 𝟎, (30)

with 𝑫 the 𝑂 × 𝑝matrix 𝜕𝝁/𝜕𝜽 and 𝑽 the covariance matrix of 𝒇. Since the elements of 𝑫 are
given by 𝐷, = 𝜕𝜇/𝜕𝜃 = 𝑋𝜇 we can write𝑫 = diag(𝝁)𝑿 and for the esƟmaƟng
funcƟon 𝑼(𝜽) we have

𝑼(𝜽) = 𝑿் diag(𝝁)𝑽ିଵ(𝒇 − 𝝁) (31)

If the counts were assumed to be independently Poisson distributed, 𝑽would be diag(𝝁) and the
funcƟon 𝑼(𝜽) would reduce to 𝑿்(𝒇 − 𝝁) which is well known to be the score-funcƟon
(derivaƟve w.r.t. 𝜽) of the likelihood associated with this assumpƟon.

The expected value of the derivaƟve matrix 𝜕𝑼(𝜽)/𝜕𝜽் is

−𝑫்𝑽ିଵ𝑫 = −𝒊(𝜽), (32)

where 𝒊(𝜽) plays the same role as the Fisher informaƟon matrix for likelihood funcƟons. In
parƟcular, if the model is correct and the observed counts are large, the distribuƟon of the GEE
esƟmator �̂� is approximately normal with covariance matrix 𝒊(𝜽)ିଵ.

For given values of the correlaƟon and dispersion parameters, the GEE esƟmator for 𝜽 (the
soluƟon to (30)) is usually obtained by Fisher scoring iteraƟons given by

𝜽௧ାଵ = 𝜽௧ + 𝒊(𝜽௧)𝑼(𝜽௧)ିଵ

= 𝜽௧ + (𝑫்
௧ 𝑽ିଵ௧ 𝑫௧)ିଵ𝑫்

௧ 𝑽ିଵ௧ (𝒇 − 𝝁௧) (33)

where 𝑡 is the iteraƟon number and 𝜽௧, 𝑽௧,𝑫௧ and 𝝁௧ are esƟmates at iteraƟon 𝑡. If 𝑽 = diag(𝝁)
(the Poisson assumpƟon), the current esƟmate of 𝑽 would be diag(𝝁(𝜽௧)) and depend on the
current esƟmate of 𝜽 only. In our applicaƟons we are oŌen not willing to assume that
𝑽 = diag(𝝁) because it is likely that overdispersion and serial correlaƟon are present and 𝑽 will
depend on 𝝁 as well as on dispersion and correlaƟon parameters and esƟmates of these
parameters are required in order to update 𝜽. Consequently, the algorithm iterates between
updaƟng 𝜽 and esƟmaƟng the dispersion and correlaƟon parameters as described in secƟon 3.3.

A problem with the updaƟng equaƟon (33) is the size (𝑝 × 𝑝) of the matrix 𝑫்
௧ 𝑽ିଵ௧ 𝑫௧. The

number of parameters 𝑝 is at least equal to the number of sites 𝐼, which can be well over 1000.
InverƟng such large matrices is very Ɵme and memory consuming, and a potenƟal source for
numerical instability. The matrix 𝑽 is of course even larger (𝑂 × 𝑂), but for this matrix a block
diagonal structure is assumed (secƟon 3.3) which reduces the problem to inverƟng the
covariance matrices for the observaƟons for each site separately. As an alternaƟve to (33) an
algorithm can be applied that uses the derivaƟves of 𝑼(𝜽) with respect to 𝜷 only. This procedure
leads to an algorithm that is much faster and less memory consuming than an algorithm based
on (33) and is described in secƟon (3.4).
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3.3 Estimation of the covariance matrix

To allow for overdispersion and serial correlaƟon, the 𝑂 × 𝑂 covariance matrix 𝑽 of 𝒇 is
expressed as

𝑽 = 𝜎ଶඥdiag𝝁𝑹ඥdiag𝝁, (34)

with 𝑹 a correlaƟon matrix. In case of no serial correlaƟon, 𝑹 simply is the idenƟty matrix,
implicaƟng that 𝑽 = 𝜎ଶ diag𝝁 in this case, or even 𝑽 = diag𝝁 when overdispersion is also
absent (Poisson assumpƟon)

A simple correlaƟon matrix 𝑹 that reflects serial correlaƟon is obtained by assuming that within
each site there is a constant correlaƟon, 𝜌 say, between the observed counts at years 𝑗 and 𝑗 − 1
and that counts from different sites are uncorrelated. This leads to a block diagonal correlaƟon
matrix of the form

𝑹 =
⎡
⎢
⎢
⎢
⎣

𝑹ଵ
⋱

𝑹
⋱

𝑹ூ

⎤
⎥
⎥
⎥
⎦

(35)

with 𝑹 the 𝑂 × 𝑂 correlaƟon matrix of the 𝑂 observaƟons in site 𝑖. If there are no missing
values in a site 𝑖 then 𝑹 is a 𝐽 × 𝐽 matrix and can be expressed as

𝑹 =
⎡
⎢
⎢
⎣

1 𝜌 𝜌ଶ … 𝜌ିଵ
𝜌 1 𝜌 … 𝜌ିଶ
⋮ ⋮ ⋮ ⋮

𝜌ିଵ 𝜌ିଶ 𝜌ିଷ … 1

⎤
⎥
⎥
⎦

(36)

which reflects a declining correlaƟon between counts as they are further apart in Ɵme. For sites
with missing values the correlaƟon matrix can be obtained from (36) by deleƟng the rows and
columns corresponding to the Ɵme-points for which there are no observaƟons.

Following Liang and Zeger (1986), an esƟmates of 𝜎ଶ can be obtained from the Pearson residuals

𝑟() = (𝑓() − 𝜇())/ඥ𝜇(), (37)

(which are obviously only available for the 𝑂 observed 𝑖, 𝑗, 𝑚 combinaƟons), as

�̂�ଶ = 1
𝑂 − 𝑝 

()
𝑟ଶ() (38)

where the summaƟon is again over the observed (𝑖, 𝑗(,𝑚)) only. Note that the inclusion of 𝑝 in
the denominator of (38) is to account for the effect of parameter-dependency of the 𝜇()’s and
hence the 𝑟()’s on the available degrees of freedom.

Similarly, an esƟmate of 𝜌 can be obtained as

�̂� = 1
𝑁�̂�ଶ

ூ


ୀଵ

ିଵ


ୀଵ

𝑟,𝑟,ାଵ (39)

where the 𝑗-summaƟon is only over consecuƟve pairs 𝑗, 𝑗 + 1 if both are observed, and 𝑁 is the
total number of all such pairs. Note again, that serial correlaƟon is only used when observaƟons
are on an annual Ɵme scale.
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3.4 An efϐicient algorithm

Using the parƟƟoning 𝜽 = (𝜶் , 𝜷்)் of the parameter vector and the corresponding parƟƟoning
𝑿 = (𝑨,𝑩), the esƟmaƟng equaƟon 𝑼(𝜽) = 𝟎 can be expressed in two equaƟons as

𝑼 = 𝑨் diag𝝁𝑽ିଵ(𝒇 − 𝝁) = 𝟎 (40a)

𝑼 = 𝑩் diag𝝁𝑽ିଵ(𝒇 − 𝝁) = 𝟎 (40b)

The negaƟve expected derivaƟve matrix 𝒊(𝜽), defined in (32), can be parƟƟoned similarly leading
to

𝒊(𝜽) = − ቈ 𝜕𝑼/𝜕𝜶் 𝜕𝑼/𝜕𝜷்
𝜕𝑼/𝜕𝜶் 𝜕𝑼/𝜕𝜷்

 = ቈ 𝑨்𝜴𝑨 𝑨்𝜴𝑩
𝑩்𝜴𝑨 𝑩்𝜴𝑩  (41)

with 𝜴 = diag𝝁𝑽ିଵ diag𝝁.

The equaƟons (40a) and (40b) can be solved in two steps. First we solve (40a) with respect to 𝜶
using the value for 𝜷 from the previous iteraƟon and subsƟtute the resulƟng value �̂�(𝜷), say in
(40b), leading to

𝑼∗
 = 𝑼(�̂�(𝜷), 𝜷). (42)

Second, we solve (42) with respect to 𝜷. With the new value for 𝜷 the two steps can be
repeated. This process is iterated unƟl convergence. The resulƟng esƟmates for 𝜶 and 𝜷 solve
the equaƟons (40a, 40b) and hence 𝑼(𝜽) = 𝟎. This two-step procedure is similar to the
“concentrated likelihood” approach for solving likelihood equaƟons (see Amemiya, 1985,
Ch. 4.2.5).

To solve (40a) for 𝜶 we note that the matrix 𝑨 contains dummy variables for each site and the
matrix 𝑽 is a block diagonal covariance matrix of the same form as (35) so that for site 𝑖 we can
write

𝟏்ை diag(𝝁)𝑽ିଵ (𝒇 − 𝝁) = 𝟎 (43)

with 𝑂 the number of observed counts for site 𝑖, 𝟏ை an 𝑂-vector with ones and 𝒇 the 𝑂-vector
with observed counts for site 𝑖 with expectaƟon 𝝁 and covariance matrix 𝑽. For 𝝁 we can write
𝝁 = 𝑎 exp(𝑩𝜷), with 𝑩 the matrix with the rows of 𝑩 corresponding to the observaƟons in
site 𝑖. Now, (43) can be wriƩen as

𝝁் 𝑽ିଵ (𝒇 − �̂� exp (𝑩𝜷)) = 𝟎

leading to

�̂� = 𝝁் 𝑽ିଵ 𝒇/𝝁் 𝑽ିଵ exp(𝑩𝜷). (44)

To solve the equaƟon𝑼∗
 = 𝟎 for 𝜷 a Fisher scoring algorithm analogous to (33) can be used. The

expected value of the required derivaƟve matrix, 𝒊∗ say, can be wriƩen as

−𝒊∗ = 𝜕𝑼∗
/𝜕𝜷் = 𝜕𝑼/𝜕𝜷் + ൫𝜕𝜶்/𝜕𝜷൯ ൫𝜕𝑼்

/𝜕𝜶൯ (45)

where the derivaƟves are evaluated in 𝜶 = �̂�(𝜷).

Next, differenƟaƟng both sides of the equaƟon 𝑼(�̂�(𝜷), 𝜷) = 𝟎 with respect to 𝜷 we obtain

൫𝜕𝜶்/𝜕𝜷൯ ൫𝜕𝑼்
/𝜕𝜶൯ + 𝜕𝑼்

/𝜕𝜷 = 𝟎
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and so we have for 𝜕𝜶்/𝜕𝜷

𝜕𝜶்/𝜕𝜷 = −𝜕𝑼்
/𝜕𝜷 ൫𝜕𝑼்

/𝜕𝜶൯
ିଵ

(46)

where again 𝜶 = �̂�(𝜷). Now, subsƟtuƟng (46) in (45) and using (41) we obtain

−𝒊∗ = 𝑩்𝜴𝑩 − 𝑩்𝜴𝑨൫𝑨்𝜴𝑨൯ିଵ 𝑨்𝜴𝑩 (47)

The matrices 𝑨, 𝑩 and 𝜴 can be very large but (47) can be rewriƩen in a form suitable for
computaƟon. Since the columns of 𝑨 are dummy variables indicaƟng the sites and 𝜴 has the
same block diagonal structure as 𝑽 (and 𝑹) we can write 𝑨்𝜴𝑨 = diag(𝒅) with 𝒅 the 𝐼-vector
with elements 𝑑 = 𝟏்𝜴𝟏 and 𝜴 the 𝑖th block of 𝜴 which can be expressed as
𝜴 = diag(𝝁)𝑽ିଵ diag(𝝁)

Now, we can rewrite (47) as

−𝒊∗ =

ቆ𝑩்

 𝜴𝑩 −
1
𝑑
𝑩்
 𝜴𝑨𝑨் 𝜴𝑩ቇ

=

𝑩்
 ቆ𝜴 −

1
𝑑
𝜴𝟏𝟏்𝜴ቇ𝑩 , (48)

and so, the matrix −𝒊∗ can be built up by a summaƟon of components for each site that do not
involve very large matrices.

In summary, the algorithm alternates between updaƟng 𝜶 and 𝜷 according to

𝜶௧ = ln൫𝒛் 𝒇൯ − ln൫𝒛் exp(𝑩𝜷௧ିଵ)൯
𝝁௧ = exp(𝑨𝜶௧ + 𝑩𝜷௧ିଵ − ln𝒘)
𝜷௧ = 𝜷௧ିଵ − ൫𝒊∗൯

ିଵ𝑼∗


(49)

where 𝒛் = 1் in case of a ML model or iteraƟon step, and 𝒛் = 𝝁𝑽ିଵ for a GEE iteraƟon step.
For GEE steps, 𝜎ଶ and 𝜌 are updated using the current value of 𝝁. EquaƟons (49) are repeated
unƟl convergence in 𝜷 (ML) or 𝛽, 𝜌 and 𝜎ଶ (GEE).

The asymptoƟc covariance matrix of �̂� can be esƟmated by the 𝑝 × 𝑝 submatrix in the
lower-right corner of −𝒊(𝜽)ିଵ evaluated at 𝜽 = �̂�. But, using the formula for the inverse of a
parƟƟoned matrix, it can be seen that this inverse equals the inverse of the right-hand side of
(47) evaluated at the esƟmates �̂�, �̂�. So, aŌer convergence of the algorithm (49) the matrix
−൫𝒊∗൯

ିଵ
provides an esƟmate of the covariance matrix of �̂�, �̂� (and/or �̂�.
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4 Model variants and extensions

4.1 Stepwise reϐinement

If the slope parameters (or, if covariates are present, the effects of covariates on the slope)
before and aŌer a certain changepoint do not differ significantly, one may wish to delete that
changepoint in order to obtain a more parsimonious model, which has less parameters than the
original model, without compromising the explanatory power. AŌer refiƫng the reduced model
one may again wish to delete a certain changepoint and so on. In rtrim a stepwise model
selecƟon procedure is implemented for this purpose. This procedure repeats the following steps:

1. Wald staƟsƟcs for the difference of the parameters before and aŌer each changepoint and
their associated significance levels are calculated. If the largest significance level exceeds a
certain threshold value (probability to remove, 𝑃ோ, default value is 0.20) the corresponding
changepoint is removed from the model.

2. For all removed changepoints except the last one, a score staƟsƟc is calculated to assess the
significance of the difference in parameters before and aŌer the changepoint. If the smallest
significance level is smaller than a threshold value (probability to enter, 𝑃ா , default value is
0.15) the changepoint is added to the model.

The procedure stops if no changepoints can be either removed or added.

4.1.1 Score test
The score test menƟoned above is a test for the significance of addiƟonal parameters that could
be added to a model. The test can be performed without actually having to esƟmate the
extended model that includes these addiƟonal parameters. This is especially an advantage for
forward stepwise model selecƟon procedures where the significance of a number of possible
addiƟonal parameters is evaluated before adding the most significant one to the model.

The score test for tesƟng if 𝑟-parameters among a larger set of 𝑝-parameters are significantly
different from zero, is obtained as follows. Let the 𝑝-vector with parameters be parƟƟoned as
𝜷 = (𝜷 , 𝜷). Where 𝜷 are unrestricted parameters and 𝜷 are parameters restricted to be
zero under the null hypothesis. To esƟmate 𝜷 under the null hypothesis, we esƟmate 𝜷 in a
reduced model that does not contain the restricted parameters and then add zeroes for the
restricted parameters, thus we obtain �̂� = ( ̂𝜷 , 𝟎). Using �̂� we can evaluate the score vector
and Hessian matrix under 𝐻 resulƟng in, using the notaƟon of secƟon 3.4, 𝑼∗

(�̂�) and 𝒊∗(�̂�),
respecƟvely.

The score staƟsƟc for tesƟng𝐻 ∶ 𝜷 = 0 is then given by (see, e.g. Cox and Hinkley, 1974, Ch. 9):

𝑆(𝜷) = 𝑼∗
(�̂�)்[−𝒊∗(�̂�)]ିଵ𝑼∗

(�̂�) (50)

But 𝑼∗
(�̂�) = [𝑼∗

(�̂�), 𝑼∗
(�̂�)] = [𝟎, 𝑼∗

(�̂�)], because of the maximisaƟon with respect to
the unrestricted parameters 𝜷. Now, if we denote, for ease of notaƟon, [−𝒊∗(�̂�)]ିଵ by 𝑽 and
we parƟƟon this matrix conformably with the parƟƟoning 𝜷 = (𝜷 , 𝜷), we can write the score
staƟsƟc as

𝑆(𝜷) = ൣ𝟎 𝑼∗
(�̂�)൧

் ቈ𝑽, 𝑽,
𝑽, 𝑽, ቈ

𝟎
𝑼∗
(�̂�)

 = 𝑼∗
(�̂�)்𝑽,𝑼∗

(�̂�) (51)
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4.2 Reparameterization of the time effects model

Here we consider the reparameterizaƟon of the Ɵme-effects model in terms of a model with a
linear trend and deviaƟons from this linear trend for each Ɵme point. The Ɵme-effects model is
given by

ln 𝜇 = 𝛼 + 𝛾 , (52)

with 𝛾 the effect for Ɵme 𝑗 on the log-expected counts and 𝛾ଵ ≡ 0. This reparameterizaƟon can
be expressed as

ln 𝜇 = 𝛼∗ + 𝛽∗𝑑 + 𝛾∗ , (53)

with 𝑑 = 𝑗 − ̄𝑗 and �̄�𝑗 the mean of the integers 𝑗 represenƟng the Ɵme points.

The parameter 𝛼∗ is the intercept and the parameter 𝛽∗ is the slope of the least squares
regression line through the 𝐽 log-expected Ɵme counts in site 𝑖 and 𝛾∗ can be seen as the
residuals of this linear fit. From regression theory we have that the ‘residuals’ 𝛾∗ sum to zero and
are orthogonal to the explanatory variable, i.e.,



𝛾∗ = 0 (54a)

and



𝑑𝛾∗ = 0. (54b)

Using these constraints we obtain the equaƟons:

ln 𝜇 = 𝛼∗ + 𝛽∗𝑑 + 𝛾∗ = 𝛼 + 𝛾 (55)




ln 𝜇 = 𝐽𝛼∗ = 𝐽𝛼 +

𝛾 (56)



𝑑 ln 𝜇 = 𝛽∗


𝑑ଶ =


𝑑𝛾 , (57)

where (55) is the re-parameterizaƟon equaƟon itself and (56) and (57) are obtained by using the
constraints.

From (56) we have that 𝛼∗ = 𝛼 +
ଵ
 ∑ 𝛾. Now, by using the equaƟons (55) thru (57) and

defining 𝐷 = ∑ 𝑑ଶ , we can express the parameters 𝛽∗ and 𝛾∗ as funcƟons of the parameters 𝛾
as follows:

𝛽∗ = 1
𝐷 


𝑑𝛾 , (58)

𝛾∗ = 𝛼 + 𝛾 − 𝛼∗ − 𝛽∗𝑑 (using (55))

= 𝛼 − ቆ𝛼 +
1
𝐽 


𝛾ቇ + 𝛾 − 𝑑

1
𝐷 


𝑑𝛾

= 𝛾 −
1
𝐽 


𝛾 − 𝑑

1
𝐷 


𝑑𝛾 . (59)
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Since 𝛽∗ and 𝛾∗ are linear funcƟons of the parameters 𝛾 they can be expressed in matrix
notaƟon by

ቆ𝛽
∗

𝜸∗ቇ = 𝑻𝜸, (60)

with 𝜸∗ = (𝛾∗ଵ , … , 𝛾∗ ), 𝜸 = (𝛾ଵ, … , 𝛾) and 𝑻 the (𝐽 + 1) × 𝐽 transformaƟon matrix that
transforms 𝜸 to (𝛽∗, 𝜸∗). From (58) and (59) it follows that the elements of 𝑻 are given by:

𝑻(ଵ,) =
𝑑
𝐷 (for 𝑖 = 1; 𝑗 = 1,… , 𝐽)

𝑻(,) = 1 − 1
𝑗 −

1
𝐷𝑑ିଵ𝑑 (for 𝑖 = 2,… , 𝐽 + 1; 𝑗 = 1,… , 𝐽; 𝑖 − 1 = 𝑗)

𝑻(,) = − 1
𝑗 −

1
𝐷𝑑ିଵ𝑑 (for 𝑖 = 2,… , 𝐽 + 1; 𝑗 = 1,… , 𝐽; 𝑖 − 1 ≠ 𝑗)

The covariance matrix of the transformed parameter vector can now be obtained from the
covariance matrix of 𝜸 as

covቆ𝛽
∗

𝜸∗ቇ = cov(𝑻𝜸) = 𝑻 cov(𝜸)𝑻் . (61)

4.2.1 Wald-test for deviations from linear trend
To test for the significance of the deviaƟons of the linear trend, we can test the hypothesis
𝐻 ∶ 𝜸∗ = 𝟎. To test this 𝐻 we must take into account that two of the 𝛾∗-parameters are
redundant in the sense that any subset of 2 of the 𝛾∗-parameters can be obtained from the
remaining 𝐽 − 2 ones by using the two linear constraint equaƟons (54). In parƟcular, the values
of any subset of 2 parameters are zero if the remaining 𝐽 − 2 ones are. Therefore, tesƟng 𝜸∗ = 𝟎
is equivalent to tesƟng 𝜸∗ିଶ = 𝟎, with 𝜸∗ିଶ a vector consisƟng of some subset of 𝐽 − 2 of the
elements of 𝜸∗. The Wald-staƟsƟc for 𝐻 ∶ 𝜸∗ିଶ = 𝟎 is given by

𝑊𝜸∗ିଶ = (𝜸∗ିଶ)் var ൫𝜸∗ିଶ൯
ିଵ 𝜸∗ିଶ, (62)

which is independent of the choice of the subset of 𝐽 − 2 𝛾∗-parameters. This staƟsƟc is
asymptoƟcally 𝜒ଶ distributed with 𝐽 − 2 degrees of freedom.

AlternaƟvely, we could retain the complete 𝜸∗-vector and the corresponding covariance matrix
to define a Wald-staƟsƟc. In that case, a generalized inverse must be used since the
covariance-matrix of 𝜸∗ is a singular matrix, with rank 𝐽 − 2 (See e.g. Harville, 1997, Chapter 9).
This approach would, however, lead to the same results as using (62).
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5 Uncertainty analysis

The most important parameters produced by rtrim are the Ɵme-totals and, especially, the
indices that are derived from them. In this subsecƟon we describe how the covariance matrix of
the Ɵme-totals is esƟmated and how the covariance matrix of the indices is derived from that
matrix. For the calculaƟon of these covariance matrices we must disƟnguish between
model-based and imputed Ɵme-totals and indices (see, subsecƟon 2.1). In subsecƟons 5.2.1 and
5.2.2 we describe the covariance esƟmator for the model-based and imputed Ɵme-totals,
respecƟvely, and in subsecƟon 5.3 we show how the variance of indices can be derived from the
variance of Ɵme-totals.

5.1 Intermezzo: Standard error of multiplicative parameters and the
delta-method

The mulƟplicaƟve parameters are simple transformaƟons of the addiƟve parameters. If we let 𝜃
denote an addiƟve scalar parameter, then the corresponding mulƟplicaƟve scalar parameter, 𝑡
say, can be expressed as a funcƟon of the addiƟve parameter by 𝑡 = 𝑓(𝜃), with 𝑓 = exp(.).

The variance of the mulƟplicaƟve parameters can be approximated by the use of the delta
method (see, e.g. AgresƟ, 1990, ch. 12 or Särndal et al., 1992, ch. 5). This method is based on
approximaƟng the funcƟon 𝑓(�̂�) by the first two terms of the Taylor series expansion around the
true value 𝜃:

𝑓(�̂�) = 𝑓(𝜃) + 𝑓ᇱ(𝜃)(�̂� − 𝜃),

with 𝑓ᇱ(𝜃) the derivaƟve of 𝑓 w.r.t. 𝜃. The variance of this approximaƟon is

var(�̂�) = var ൫𝑓(�̂�)൯ = ൫𝑓ᇱ(𝜃)൯ଶ var(�̂�). (63)

For the funcƟon 𝑓 = exp(⋅), that transforms the addiƟve parameters into the mulƟplicaƟve
ones, this variance approximaƟon leads to the variance esƟmator

var(�̂�) = �̂�ଶ var(�̂�), (64)

so that the standard error of a mulƟplicaƟve parameter can simply be esƟmated by the standard
error esƟmate of the addiƟve parameter Ɵmes the esƟmated value of the mulƟplicaƟve
parameter.

There is a straighƞorward generalisaƟon of the Taylor-series approximaƟon, and corresponding
variance esƟmator, for a (vector- or scalar-valued) funcƟon of a vector-valued random variable.
In parƟcular, if 𝒕 is a funcƟon 𝑓(𝜽) of 𝜽, with 𝜽 a vector and 𝒕 either a vector or a scalar, the first
two terms of the Taylor-series expansion are

𝑓(�̂�) = 𝑓(𝜽) + 𝑫(�̂� − 𝜽) (65)

with 𝑫 = 𝜕𝑓(𝜽)/𝜕𝜽 and the covariance matrix of 𝒕 can be expressed as

cov(𝒕) = 𝑫 cov(𝜽)𝑫் , (66)

with cov(𝜽) the covariance matrix of 𝜽, a result which will be used repeatedly in the secƟons
below.
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5.2 Standard errors of time-totals

5.2.1 Standard errors of model based time-totals
StarƟng with model based Ɵme totals, these are defined as the total esƟmated counts for a given
year 𝑗 aggregated over all sites 𝑖:

�̂� = 
()

�̂�() (67)

or, vectorizing,

�̂� = 𝑪�̂� (68)

where �̂� is a 𝐽-vector, and 𝐽 × 𝐼𝐽matrix 𝑪 is defined as 𝑪 = ൫𝑰 , 𝑰 , … , 𝑰൯, with 𝑰 an 𝐽 × 𝐽 idenƟty
matrix, and the number of idenƟty matrices equal to the number of sites 𝐼.

The covariance matrix of the esƟmated Ɵme-totals can then be expressed as

var(�̂�) = 𝑪 var(�̂�)𝑪் = 𝑪𝑫 var(�̂�)𝑫்𝑪்

= 𝑪 diag(�̂�)𝑿 var(�̂�)𝑿் diag(�̂�)𝑪்
(69)

where we have used the usual Taylor-series variance approximaƟon var(�̂�) = 𝑫 var(�̂�)𝑫், with
𝑫 = 𝜕𝝁/𝜕𝜽் (see secƟon 5.1 and the paragraph following Eqn (30)).

To compute the standard errors of the model based Ɵme-totals according to (69) we need the
covariance matrix of the complete esƟmated parameter vector 𝜽. This matrix is not easy to
compute because it requires inversion of a very large matrix, as pointed out in secƟon 3.2. An
alternaƟve formula for var(�̂�) that is suitable for computaƟon will be derived in this subsecƟon.

Consider the parƟƟoned form (41) of 𝒊(𝜽), which can be re-expressed as

𝒊(𝜽) = ቈ 𝑨்𝜴𝑨 𝑨்𝜴𝑩
𝑩்𝜴𝑨 𝑩்𝜴𝑩  = ቈ 𝒊 𝒊

𝒊் 𝒊
 (70)

with 𝜴 = diag(𝝁)𝑽ିଵ diag(𝝁).

The inverse of this parƟƟoned matrix can be expressed as (Rao, 1973, page 33)

𝒊(𝜽)ିଵ = ቈ 𝒊
ିଵ
 + 𝑭𝑬ିଵ𝑭் −𝑭𝑬ିଵ
−𝑬ିଵ𝑭் 𝑬ିଵ  = ቈ 𝜱ଵଵ 𝜱ଵଶ

𝜱ଶଵ 𝜱ଶଶ
 (71)

where

𝒊 = 𝑨்𝜴𝑨 = diag(𝒅),
𝑬 = 𝒊 − 𝒊்𝒊ିଵ𝒊 = 𝒊∗ఉ

and

𝑭 = 𝒊ିଵ𝒊 = diag(𝒅)ିଵ𝑨்𝜴𝑩 = 
𝑑ିଵଵ 𝒘்

ଵ𝑩ଵ
⋮

𝑑ିଵூ 𝒘்
ூ 𝑩ூ

 ,

with

𝒘 = 𝟏்ை𝜴 =

(𝝁

ଵ
ଶ
 )(𝝁

ଵ
ଶ
 )(𝑹)
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and

𝑑 = 𝟏்ை𝒘

From this representaƟon we see that we only need the inverse of 𝑬 (which is already produced
by the algorithm) and the inverse of 𝒊 (which is a diagonal matrix) in order to calculate the
inverse of 𝒊(𝜽).

The covariance matrix of the esƟmated Ɵme-totals can now be expressed as

var(�̂�) = 𝑪 diag(𝝁)𝑿 var(�̂�)𝑿் diag(𝝁)𝑪்

= 𝑪 diag(𝝁) ൣ𝑨𝜱ଵଵ𝑨் + 𝑩𝜱ଶଵ𝑨் + 𝑨𝜱ଵଶ𝑩் + 𝑩𝜱ଶଶ𝑩்൧ diag(𝝁)𝑪்

= 𝑮𝜱ଵଵ𝑮் +𝑯𝜱ଶଵ𝑮் + 𝑮𝜱ଵଶ𝑯் +𝑯𝜱ଶଶ𝑯்

= 𝑮diag(𝒅)ିଵ𝑮் + 𝑮𝑭𝑬ିଵ(𝑮𝑭)் −𝑯𝑬ିଵ(𝑮𝑭)் − 𝑮𝑭𝑬ିଵ𝑯் +𝑯𝑬ିଵ𝑯்

= 𝑮diag(𝒅)ିଵ𝑮் + (𝑮𝑭 − 𝑯)𝑬ିଵ(𝑮𝑭 − 𝑯)் (72)

with 𝑮 = 𝑪 diag(𝝁)𝑨 and𝑯 = 𝑪 diag(𝝁)𝑩.

To compute the covariance matrix (72) the following expressions for the elements of the 𝐽 × 𝐼
matrix 𝑮, the 𝐽 × 𝑝 matrix 𝑮𝑯, the 𝐽 × 𝑝 matrix𝑯 and the 𝐽 × 𝐽matrix 𝑮diag(𝒅)ିଵ𝑮் are used:

𝑮 = 𝜇 , (73)

(𝑮𝑭) =

𝜇𝑭 , (74)

𝑯 =

(𝑩)𝜇 (75)

(𝑮diag(𝒅)ିଵ𝑮்) =

𝜇𝜇𝑑ିଵ . (76)

So, the matrices 𝑮𝑭 −𝑯 and 𝑮diag(𝒅)ିଵ𝑮் can be obtained by a summaƟon over sites.

In case of monthly data, the expressions for 𝑮 and 𝑮diag(𝒅)ିଵ𝑮் changes to

𝑮 =

𝜇

(𝑮𝑭) =

𝑮𝑭

𝑯 =



(𝑩)𝜇

(𝑮diag(𝒅)ିଵ𝑮்) =

𝑮𝑮𝑑ିଵ

where 𝑩 the subblock of 𝑩 represenƟng the 𝛽 parameters corresponding to month𝑚. For
𝑚 = 1 these are rows 1,… , 𝐽, for𝑚 = 2 rows (𝐽 + 1), … , 2𝐽, etc.

5.2.2 Standard error of imputed time-totals
The 𝐽-vector with imputed Ɵme-totals can be wriƩen as

�̃� = 𝑪𝒇ା = 𝑪𝒇 + 𝑪௫�̂�௫ , (77)
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where 𝒇ା denotes the vector containing the imputed counts with elements given by

𝑓ା() = ൝𝑓() if observed
𝜇() otherwise

The vector 𝒇ା is split up in two parts: a vector 𝒇 containing the observed elements and a vector
�̂�௫ with the esƟmated values for the missing observaƟons. The matrix 𝑪 is split up accordingly,
into a matrix 𝑪 containing the columns of 𝑪 corresponding to the observed elements in 𝒇ା and
a matrix 𝑪௫ containing the columns of 𝑪 corresponding to the missing elements in 𝒇ା.

Now, the covariance matrix of �̃� can be wriƩen as the sum of three 𝐽 × 𝐽 matrices:

var(�̃�) = 𝑪 var(𝒇)𝑪் + 2𝑪௫ cov(�̂�௫ , 𝒇)𝑪் + 𝑪௫ var(�̂�௫)𝑪்௫ . (78)

where we have used that 𝑪 cov(𝒇, �̂�௫)𝑪்௫ = 𝑪௫ cov(�̂�௫ , 𝒇)𝑪் .

To evaluate (78) we need esƟmates of the three covariance matrices var(𝒇), var(�̂�௫) and
cov(�̂�௫ , 𝒇). Using previous results, var(𝒇) and var(�̂�) are relaƟvely easy to obtain but cov(�̂�௫ , 𝒇)
needs some further linear approximaƟons.

To obtain the covariance between the observed counts 𝒇 and the esƟmated missing counts �̂�௫
we first express the esƟmated expected counts as a funcƟon of the esƟmated parameters �̂� by
the Taylor-series approximaƟon according to (65):

�̂�௫ ≈ 𝝁௫ +𝑫௫(�̂� − 𝜽), (79)

since 𝑫௫ = 𝜕𝜇௫/𝜕𝜽. Next we use a Taylor-series approximaƟon of the GEE esƟmaƟng equaƟon
(30) to express the parameter esƟmate �̂� as a funcƟon of the observed counts, leading to

𝑼(�̂�) = 𝑫்
𝑽ିଵ(𝒇 − �̂�)

≈ 𝑼(𝜽) + (𝜕𝑼(𝜽)/𝜕𝜽)(�̂� − 𝜽)
= 𝑫்

𝑽ିଵ(𝒇 − 𝝁) − 𝑫்
𝑽ିଵ𝑫(�̂� − 𝜽),

and hence,

�̂� − 𝜽 = (𝑫்
𝑽ିଵ𝑫)ିଵ𝑫்

𝑽ିଵ(𝒇 − 𝝁),

which, aŌer subsƟtuƟng in (79), results in an expression for �̂�௫ as a funcƟon of 𝒇:

�̂�௫ − 𝝁௫ = 𝑫௫(𝑫்
𝑽ିଵ𝑫)ିଵ𝑫்

𝑽ିଵ(𝒇 − 𝝁).

Also,

var(�̂�) = (𝑫்
𝑽ିଵ𝑫)ିଵ.

Using these expression we obtain for cov(�̂�௫ , 𝒇)

cov(�̂�௫ , 𝒇) = 𝐸(�̂�௫ − 𝝁௫)(𝒇 − 𝝁)்

= 𝑫௫(𝑫்
𝑽ିଵ𝑫)ିଵ𝑫்

𝑽ିଵ𝐸(𝒇 − 𝝁)(𝒇 − 𝝁)்

= 𝑫௫(𝑫்
𝑽ିଵ𝑫)ିଵ𝑫்

𝑽ିଵ var(𝒇)
= 𝑫௫ var(�̂�)𝑫்

 (using 𝑽 = var(𝒇)). (80)
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Now, by using 𝑪௫ var(�̂�)𝑪்௫ = 𝑪௫𝑫௫ var(�̂�)𝑫்
௫𝑪்௫ (analogous to (69)) and by subsƟtuƟng (80) in

(78), we have

var(�̃�) = 𝑪 var(𝒇)𝑪் + 2𝑪௫𝑫௫ var(�̂�)𝑫்
𝑪் + 𝑪௫𝑫௫ var(�̂�)𝑫்

௫𝑪்௫ ,
= 𝑪 var(𝒇)𝑪் + 𝑪𝑫 var(�̂�)𝑫்𝑪் − 𝑪𝑫 var(�̂�)𝑫்

𝑪் . (81)

The matrix 𝑪 var(𝒇)𝑪் can be esƟmated from the data by using var(𝒇) as decribed in secƟon
3.3. This esƟmate depends on the assumpƟons of possible serial correlaƟon and overdispersion.
If serial correlaƟon is assumed to be present, the observed counts within sites are correlated but
remain independent across sites, resulƟng in a block-diagonal structure with blocks
corresponding to the sites.

The matrix 𝑪𝑫 var(�̂�)𝑫்𝑪் is the covariance matrix of the model based Ɵme-totals, the
computaƟon of which is described in secƟon 5.2.1. The matrix 𝑪𝑫𝑣𝑎𝑟(�̂�)𝑫்

𝑪் can be
calculated similarly, by restricƟng all calculaƟons to the observed counts only.

5.2.3 Standard errors with external covariance matrix of counts
The esƟmaƟon procedures and standard error esƟmates in rtrim normally use an esƟmate of
the covariance matrix of the observed counts, based on the user specified opƟons for serial
correlaƟon and overdispersion. It is, however, also possible to use a covariance matrix that is
completely specified by the user. In this case, the parameters of the models will be esƟmated by
maximum likelihood, that is, using a covariance matrix based on the assumpƟon of independent
Poisson distribuƟons for the counts (no serial correlaƟon, variance equal to the expected value).
Although this assumpƟon will normally not be in line with the user specified covariance matrix,
the parameter esƟmates remain consistent and the effects on point esƟmates of using the
”wrong” covariance matrix are usually small. This does, however, not hold for the effects on
variances and standard errors and for these a correcƟon is necessary that takes the user specified
covariance matrix into account. This approach is described by e.g. Royal (1986) and White
(1980). The resulƟng corrected covariance esƟmator is oŌen called the “sandwich” esƟmator.
This sandwich esƟmator is applied in rtrim for esƟmaƟng the covariance of Ɵme-totals when a
user specified covariance matrix is used and will be described below.

The sandwich covariance esƟmator is given by

var(�̂�) = 𝒊(𝜽)ିଵ 𝑺 𝒊(𝜽)ିଵ (82)

With 𝒊(𝜽)ିଵ the inverse of the informaƟon matrix of the likelihood (compare (32)). This matrix is
the covariance matrix of the parameter esƟmate �̂� if the model assumpƟons underlying the
ML-procedure are saƟsfied (independent Poisson counts). The matrix 𝒊(𝜽) in (82) is a special
case of the corresponding matrix in the GEE-esƟmaƟon procedure of secƟon 3.2, obtained by
seƫng the covariance matrix of the observed counts (𝑽) equal to diag(𝝁) in accordance with the
independent Poisson assumpƟon.

The matrix 𝑺 is the outer product of the score vector (derivaƟve of the log-likelihood), which in
this case is:

𝑺 = E ൣ𝑿்(𝒇 − 𝝁)(𝒇 − 𝝁)்𝑿൧
= 𝑿் var(𝒇)𝑿, (83)
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with 𝒇 the observed counts and 𝝁 the expected counts corresponding to these observed counts.
The covariance matrix of the observed counts var(𝒇) is a block diagonal matrix with elements
specified by the user. Using this 𝑺 we write the covariance matrix of �̂� as:

var(�̂�) = 𝑪 diag(𝝁)𝑿𝒊(𝜽)ିଵ𝑿் var(𝒇)𝑿𝒊(𝜽)ିଵ𝑿் diag(𝝁)𝑪்

= 𝑷 var(𝒇)𝑷் , say. (84)

Using the parƟƟoning (70) of 𝒊(𝜽)ିଵ and 𝑿 = [𝑨,𝑩] we can write for 𝑷:
𝑷 = 𝑪 diag(𝝁)[𝑨𝜱ଵଵ𝑨் + 𝑩𝜱ଶଵ𝑨் + 𝑨𝜱ଵଶ𝑩் + 𝑩𝜱ଶଶ𝑩்

= 𝑮𝜱ଵଵ𝑨் +𝑯𝜱ଶଵ𝑨் + 𝑮𝜱ଵଶ𝑩் +𝑯𝜱ଶଶ𝑩்

= 𝑮diag(𝝁ା)ିଵ𝑨் + 𝑮𝑭𝑬ିଵ𝑭்𝑨் − 𝑮𝑭𝑬ିଵ𝑩் −𝑯𝑬ିଵ𝑭்𝑨் +𝑯𝑬ିଵ𝑩்

= 𝑮diag(𝝁ା)ିଵ𝑨் + (𝑮𝑭 − 𝑯)𝑬ିଵ(𝑭்𝑨் − 𝑩்),

(85)

where 𝑭, 𝑮,𝑯 and 𝑬 as defined in (71) and (72). The matrices 𝑭 and 𝑬 are somewhat simpler
here because, in the absence of overdispersion and serial correlaƟon, they are based on the
simplified form of 𝒊(𝜽) obtained by seƫng 𝜴 equal to diag(𝝁). The matrix diag(𝝁ା) is a diagonal
matrix with the sum, over the years, of the expected counts of each site on the diagonal.

The first component of the sum 𝑷 (85), can be parƟƟoned according to the sites as,

𝑮diag(𝝁ା)ିଵ𝑨் =
1
𝜇ାଵ

𝝁ଵ𝟏்obsଵ , … , 1
𝜇ା

𝝁𝟏்obs , … , 1
𝜇ାூ

𝝁𝟏்obsூ
= [𝑸ଵ ⋮, … , ⋮ 𝑸 ⋮, … , ⋮ 𝑸ூ], say,

(86)

with 𝟏obs a vector of ones with length equal to obs, the number of observed values in site 𝑖, thus
the length of 𝒇. The site specific matrices 𝑸 have obs idenƟcal columns, each equal to 𝜇/𝜇ା.

The matrix (𝑮𝑭 − 𝑯) is a constant for all sites because it is obtained by a summaƟon over sites,
analogous to the calculaƟon of this matrix in the case of variance of the model based indices in
secƟon 5.2.1.

The matrix 𝑬ିଵ is also constant over sites. It is in this case the esƟmated covariance matrix of the
𝛽-parameters according to the ML-method with which these parameters are esƟmated. This
matrix is calculated as part of the ML-procedure.

5.3 Standard error of indices

EsƟmated Ɵme-totals can be model-based or imputed, and each of these is based on a model
that can have been esƟmated the ML or GEE method. The covariance matrix of the Ɵme-totals
will differ among definiƟons and methods, but in all cases, the indices are the same funcƟons of
the Ɵme-totals and the covariance matrix of the indices is the same funcƟon of the covariance
matrix of the Ɵme-totals, irrespecƟve of the definiƟon or esƟmaƟon procedure used.

The index for Ɵme-point 𝑗 with respect to some reference Ɵme point 𝑏, (𝜏 say) can be expressed
as a funcƟon of the Ɵme-totals for Ɵme-points 𝑗 and 𝑏:

𝜏 = 𝑡/𝑡 . (87)
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To obtain the variances of the esƟmated indices as funcƟons of the variances and covariance of
the Ɵme-totals 𝑡 and 𝑡, we apply the delta-method outlined in secƟon 5.1. For this we need
the vector with derivaƟves of 𝜏 w.r.t. 𝑡 and 𝑡, given by

𝒅 = ቆ−𝑡𝑡
ିଶ


𝑡ିଵ
ቇ (88)

The variance of an index 𝜏 can now be obtained, by applying (66), as

var(𝜏) = 𝒅்𝑽௧ ,௧𝒅, (89)

with 𝑽௧ ,௧ the covariance matrix of 𝑡 and 𝑡 corresponding to the definiƟon of the totals
(model-based or imputed) and esƟmaƟon method used.

Note that the index for Ɵme-point 𝑏 (the base-Ɵme) is, by definiƟon and for all data sets, equal to
1. So, for 𝑗 = 𝑏 we must have that var(𝜏) = 0. Indeed, by subsƟtuƟng 𝑡 for 𝑡 in (89) and
seƫng var(𝑡) = cov(𝑡 , 𝑡) = var(𝑡) we obtain zero for the r.h.s. of (89).

5.3.1 Using multi-year reference periods for indexing
SomeƟmes, interannual variability of observaƟons is high, such that the computed index values
are highly conƟngent on the counts in the base year. In these cases, it may be more robust to use
a longer Ɵme period as reference instead of a single year. rtrim facilitates this extended
indexing by allowing for mulƟple, say 𝑛, base years, say 𝑏ଵ, … , 𝑏 In this case, the expression (87)
for 𝜏 changes to

𝜏 = 𝑡/ ̄𝑡 (90)

where ̄𝑡 = (𝑡ଵ +…+ 𝑡)/𝑛 is the average Ɵme total for the base years.

The parƟal derivaƟves of 𝜏 are now given by the vector of length 𝑛 + 1

𝒅 = ൮
−𝑛𝑡(∑ 𝑡)ିଶ

⋮
−𝑛𝑡(∑ 𝑡)ିଶ
𝑛(∑ 𝑡)ିଵ

൲ (91)

where the repeated elements make up the first 𝑛 elements of 𝒅. Note that (87) and (88) are
special cases of (90) and (91).

5.4 Standard error of overall slope

In secƟon 2.5 we defined as a summary measure for the overall trend the slope of the regression
line, esƟmated by ols, through the esƟmated log Ɵme-totals (model (15)). For this model (see,
(16))

�̂� = (𝛼, 𝛽ା)் = (𝑿்𝑿)ିଵ𝑿்𝒚,

with 𝒚 the vector with as elements the log-expected total counts, ln 𝜇ା. The covariance matrix
of �̂� is a funcƟon of the covariance matrix 𝑽(𝒚) of 𝒚 and is given by

𝑽(�̂�) = (𝑿்𝑿)ିଵ𝑿்𝑽(𝒚)𝑿(𝑿்𝑿)ିଵ, (92)

and the variance of the esƟmated overall slope parameter �̂�ା is the lower right element of this
matrix.
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The covariance matrix 𝑉(𝒚) in (92) will depend on the model used and the specificaƟon of the
covarance matrix of the observed counts, e.g., the seƫngs of the opƟons for serial correlaƟon
and overdispersion.
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