scISR: Single-Cell Imputation using Subspace Regression

Provides an imputation pipeline for single-cell RNA sequencing data. The 'scISR' method uses a hypothesis-testing technique to identify zero-valued entries that are most likely affected by dropout events and estimates the dropout values using a subspace regression model (Tran et.al. (2022) <doi:10.1038/s41598-022-06500-4>).

Version: 0.1.1
Depends: R (≥ 3.4)
Imports: cluster, entropy, stats, utils, parallel, irlba, PINSPlus, matrixStats, markdown
Suggests: testthat, knitr, mclust
Published: 2022-06-30
DOI: 10.32614/CRAN.package.scISR
Author: Duc Tran [aut, cre], Bang Tran [aut], Hung Nguyen [aut], Tin Nguyen [fnd]
Maintainer: Duc Tran <duct at nevada.unr.edu>
BugReports: https://github.com/duct317/scISR/issues
License: LGPL-2 | LGPL-2.1 | LGPL-3 [expanded from: LGPL]
URL: https://github.com/duct317/scISR
NeedsCompilation: no
Citation: scISR citation info
Materials: README
CRAN checks: scISR results

Documentation:

Reference manual: scISR.pdf
Vignettes: scISR package manual

Downloads:

Package source: scISR_0.1.1.tar.gz
Windows binaries: r-devel: scISR_0.1.1.zip, r-release: scISR_0.1.1.zip, r-oldrel: scISR_0.1.1.zip
macOS binaries: r-release (arm64): scISR_0.1.1.tgz, r-oldrel (arm64): scISR_0.1.1.tgz, r-release (x86_64): scISR_0.1.1.tgz, r-oldrel (x86_64): scISR_0.1.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=scISR to link to this page.