textrecipes contain extra steps for the recipes
package for preprocessing text data.
You can install the released version of textrecipes from CRAN with:
install.packages("textrecipes")
Install the development version from GitHub with:
# install.packages("pak")
::pak("tidymodels/textrecipes") pak
In the following example we will go through the steps needed, to
convert a character variable to the TF-IDF of its tokenized words after
removing stopwords, and, limiting ourself to only the 10 most used
words. The preprocessing will be conducted on the variable
medium
and artist
.
library(recipes)
library(textrecipes)
library(modeldata)
data("tate_text")
<- recipe(~ medium + artist, data = tate_text) %>%
okc_rec step_tokenize(medium, artist) %>%
step_stopwords(medium, artist) %>%
step_tokenfilter(medium, artist, max_tokens = 10) %>%
step_tfidf(medium, artist)
<- okc_rec %>%
okc_obj prep()
str(bake(okc_obj, tate_text))
#> tibble [4,284 × 20] (S3: tbl_df/tbl/data.frame)
#> $ tfidf_medium_colour : num [1:4284] 2.31 0 0 0 0 ...
#> $ tfidf_medium_etching : num [1:4284] 0 0.86 0.86 0.86 0 ...
#> $ tfidf_medium_gelatin : num [1:4284] 0 0 0 0 0 0 0 0 0 0 ...
#> $ tfidf_medium_lithograph : num [1:4284] 0 0 0 0 0 0 0 0 0 0 ...
#> $ tfidf_medium_paint : num [1:4284] 0 0 0 0 2.35 ...
#> $ tfidf_medium_paper : num [1:4284] 0 0.422 0.422 0.422 0 ...
#> $ tfidf_medium_photograph : num [1:4284] 0 0 0 0 0 0 0 0 0 0 ...
#> $ tfidf_medium_print : num [1:4284] 0 0 0 0 0 ...
#> $ tfidf_medium_screenprint: num [1:4284] 0 0 0 0 0 0 0 0 0 0 ...
#> $ tfidf_medium_silver : num [1:4284] 0 0 0 0 0 0 0 0 0 0 ...
#> $ tfidf_artist_akram : num [1:4284] 0 0 0 0 0 0 0 0 0 0 ...
#> $ tfidf_artist_beuys : num [1:4284] 0 0 0 0 0 ...
#> $ tfidf_artist_ferrari : num [1:4284] 0 0 0 0 0 0 0 0 0 0 ...
#> $ tfidf_artist_john : num [1:4284] 0 0 0 0 0 0 0 0 0 0 ...
#> $ tfidf_artist_joseph : num [1:4284] 0 0 0 0 0 ...
#> $ tfidf_artist_león : num [1:4284] 0 0 0 0 0 0 0 0 0 0 ...
#> $ tfidf_artist_richard : num [1:4284] 0 0 0 0 0 0 0 0 0 0 ...
#> $ tfidf_artist_schütte : num [1:4284] 0 0 0 0 0 0 0 0 0 0 ...
#> $ tfidf_artist_thomas : num [1:4284] 0 0 0 0 0 0 0 0 0 0 ...
#> $ tfidf_artist_zaatari : num [1:4284] 0 0 0 0 0 0 0 0 0 0 ...
As of version 0.4.0, step_lda()
no longer accepts
character variables and instead takes tokenlist variables.
the following recipe
recipe(~text_var, data = data) %>%
step_lda(text_var)
can be replaced with the following recipe to achive the same results
<- function(x) text2vec::word_tokenizer(tolower(x))
lda_tokenizer recipe(~text_var, data = data) %>%
step_tokenize(text_var,
custom_token = lda_tokenizer
%>%
) step_lda(text_var)
This project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.
For questions and discussions about tidymodels packages, modeling, and machine learning, please post on RStudio Community.
If you think you have encountered a bug, please submit an issue.
Either way, learn how to create and share a reprex (a minimal, reproducible example), to clearly communicate about your code.
Check out further details on contributing guidelines for tidymodels packages and how to get help.