Extreme Quantile Regression Neural Networks for Risk Forecasting


[Up] [Top]

Documentation for package ‘EQRN’ version 0.1.1

Help Pages

check_directory Check directory existence
compute_EQRN_GPDLoss Generalized Pareto likelihood loss of a EQRN_iid predictor
compute_EQRN_seq_GPDLoss Generalized Pareto likelihood loss of a EQRN_seq predictor
default_device Default torch device
end_doFuture_strategy End the currently set doFuture strategy
EQRN_excess_probability Tail excess probability prediction using an EQRN_iid object
EQRN_excess_probability_seq Tail excess probability prediction using an EQRN_seq object
EQRN_fit EQRN fit function for independent data
EQRN_fit_restart Wrapper for fitting EQRN with restart for stability
EQRN_fit_seq EQRN fit function for sequential and time series data
EQRN_load Load an EQRN object from disc
EQRN_predict Predict function for an EQRN_iid fitted object
EQRN_predict_params GPD parameters prediction function for an EQRN_iid fitted object
EQRN_predict_params_seq GPD parameters prediction function for an EQRN_seq fitted object
EQRN_predict_seq Predict function for an EQRN_seq fitted object
EQRN_save Save an EQRN object on disc
excess_probability Excess Probability Predictions
excess_probability.EQRN_iid Tail excess probability prediction method using an EQRN_iid object
excess_probability.EQRN_seq Tail excess probability prediction method using an EQRN_iid object
FC_GPD_net MLP module for GPD parameter prediction
FC_GPD_SNN Self-normalized fully-connected network module for GPD parameter prediction
fit_GPD_unconditional Maximum likelihood estimates for the GPD distribution using peaks over threshold
get_doFuture_operator Get doFuture operator
get_excesses Computes rescaled excesses over the conditional quantiles
GPD_excess_probability Tail excess probability prediction based on conditional GPD parameters
GPD_quantiles Compute extreme quantile from GPD parameters
install_backend Install Torch Backend
lagged_features Covariate lagged replication for temporal dependence
last_elem Last element of a vector
loss_GPD Generalized Pareto likelihood loss
loss_GPD_tensor GPD tensor loss function for training a EQRN network
make_folds Create cross-validation folds
mean_absolute_error Mean absolute error
mean_squared_error Mean squared error
mts_dataset Dataset creator for sequential data
multilevel_exceedance_proba_error Multilevel 'quantile_exceedance_proba_error'
multilevel_MAE Multilevel quantile MAEs
multilevel_MSE Multilevel quantile MSEs
multilevel_pred_bias Multilevel prediction bias
multilevel_prop_below Multilevel 'proportion_below'
multilevel_q_loss Multilevel quantile losses
multilevel_q_pred_error Multilevel 'quantile_prediction_error'
multilevel_resid_var Multilevel residual variance
multilevel_R_squared Multilevel R squared
perform_scaling Performs feature scaling without overfitting
predict.EQRN_iid Predict method for an EQRN_iid fitted object
predict.EQRN_seq Predict method for an EQRN_seq fitted object
predict.QRN_seq Predict method for a QRN_seq fitted object
prediction_bias Prediction bias
prediction_residual_variance Prediction residual variance
predict_GPD_semiconditional Predict semi-conditional extreme quantiles using peaks over threshold
predict_unconditional_quantiles Predict unconditional extreme quantiles using peaks over threshold
process_features Feature processor for EQRN
proportion_below Proportion of observations below conditional quantile vector
QRNN_RNN_net Recurrent quantile regression neural network module
QRN_fit_multiple Wrapper for fitting a recurrent QRN with restart for stability
QRN_seq_fit Recurrent QRN fitting function
QRN_seq_predict Predict function for a QRN_seq fitted object
QRN_seq_predict_foldwise Foldwise fit-predict function using a recurrent QRN
QRN_seq_predict_foldwise_sep Sigle-fold foldwise fit-predict function using a recurrent QRN
quantile_exceedance_proba_error Quantile exceedance probability prediction calibration error
quantile_loss Quantile loss
quantile_loss_tensor Tensor quantile loss function for training a QRN network
quantile_prediction_error Quantile prediction calibration error
Recurrent_GPD_net Recurrent network module for GPD parameter prediction
roundm Mathematical number rounding
R_squared R squared
safe_save_rds Safe RDS save
semiconditional_train_valid_GPD_loss Semi-conditional GPD MLEs and their train-validation likelihoods
Separated_GPD_SNN Self-normalized separated network module for GPD parameter prediction
set_doFuture_strategy Set a doFuture execution strategy
square_loss Square loss
unconditional_train_valid_GPD_loss Unconditional GPD MLEs and their train-validation likelihoods
vec2mat Convert a vector to a matrix
vector_insert Insert value in vector