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Content:

Part 1. Shaping tables and NB2 modelling of counts

Part 2. Power analysis

Part 3. Modelling risks, relative risks, standardized ratios

Part 4. Modelling interval censored survival data. Joint hypotheses testing

FUNCTIONALITY

1. Constructs tables of counts and proportions out of data sets.

2. Inserts table into Excel and Word documents using clipboard, into LaTeX, HTML, Markdown and

reStructuredText documents by the knitr::kable agency.

3. Molds table into acceptable for log-linear modeling data.frame, co.

4. Performs log-linear modeling.

5. Performs power analysis.

• This version is coded in R language exclusively to support across-systems portability.

• Log-linear and power analyses are enhanced with ability to model risks (rates) and rel-

ative risks (standardized ratios). Modelling survival data with interval censoring is also

supported.
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Modelling risks, relative risks, standardized ratios.

Every so often exposure can’t be grouped without great loss of information, e.g., number of pills used

by patient, time that passed after treatment, accumulated exposure to pesticide, person-years under

treatment. Moreover, in such circumstances researcher is more inclined to model risks or rates that

generate counts. Using par offset one can model underlying risks. Offset is a variable from data set

that contains size of exposure. Say, if there were 150 cases of cancer observed in population A of 10000

in 5 years, the exposure is 50000 person-years, so that rate is 3/1000. If we collect such data across

different populations the question may arise whether the rate depends on provision with oncologists. So

dependent variable is still counts of cancer cases observed in different populations, independent variable

is provision with oncologists, while offset is exposure measured in person-years. Exposure covers

different populations of different size and different periods of observation. This feature is auspicious

for clinical trials data. Here we have personal records. If we measure exposure as number of pills

taken by patient and response (outcome measure) is number of side effects under different regiments of

treatment then dependent variable is number of side effects developed by patient, independent variable

is regiment of treatment, and offset is number of pills.

Example 1.

Let’s consider breast cancer rates in Iceland by year of birth (11 cohorts from 1840-1849 to 1940-1949)

and by age (13 groups from 20-24 to 80-84 years), analysed by Breslow and Clayton (1993). Data is

used also in BUGS Example “Ice: non-parametric smoothing in an age-cohort model” 1. Data supplied

with package and include variables age (Age group: 1-13), year (Birth cohort: 1-11), cases (Breast cancer

counts), pyr (Person-years of risk). Let’s model effects of age and year of birth on the rates of breast

cancer with function MCLogLin().

r❡q✉✐r❡✭❧t❛❜❧❡✮

❞❛t❛✭❇❈❞❛t❛✮

r❡s❁✲▼❈▲♦❣▲✐♥✭❝❛s❡s⑦❛❣❡✰②❡❛r✱ ♦❢❢s❡t❂♣②r✱

❞r❛✇❂✺✵✵✵✱ ❞❛t❛❂❇❈❞❛t❛✮

File offsetdata.rda includes 3 data sets (BCdata, SMdata, SimData), each used in examples with offset.

The result is given in table below:

1BUGS. Examples Volume 2. https://www.mrc-bsu.cam.ac.uk/wp-content/uploads/WinBUGS_Vol2.pdf .

https://www.mrc-bsu.cam.ac.uk/wp-content/uploads/WinBUGS_Vol2.pdf
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Effects Estimate Std.Error z-score Pr(>z)

(Intercept) -1.110e+01 4.439e-01 2.500e+01 0.000e+00

age 3.388e-01 2.997e-02 1.130e+01 1.254e-29

year 1.984e-01 4.367e-02 4.543e+00 5.541e-06

phi 3.212e+00 8.740e-03 3.675e+02 0.000e+00

All effects are significant. ψ equals 3.212 that indicates overdispersion. Let’s change ψ to value 0.01. It’s

not possible to do for user, but just for didactic purpose let’s key up overdispersion. The output is as

follows:

Effects Estimate Std.Error z-score Pr(>z)

(Intercept) -1.022e+01 6.713e+00 1.523e+00 1.278e-01

age 4.427e-01 4.572e-01 9.684e-01 3.329e-01

year 2.819e-01 6.743e-01 4.180e-01 6.759e-01

phi 1.000e-02 1.807e-04 5.535e+01 0.000e+00

As one can see strong heterogeneity dissipates significance. Note, that ψ is parameter to be sampled with

MCMC that evaluates heterogeneity. I just displayed what influence heterogeneity renders to statistical

tests of regression effects. Now, let’s change ψ to value 100. It means it is not sampled any more and

is taken as it put. Here what we have:

Effects Estimate Std.Error z-score Pr(>z)

(Intercept) -1.079e+01 2.101e-01 5.134e+01 0.000e+00

age 3.060e-01 1.316e-02 2.326e+01 0.000e+00

year 1.907e-01 1.990e-02 9.583e+00 9.418e-22

phi 1.000e+02 8.500e-02 1.177e+03 0.000e+00

This acts to the opposite effect. Neglect of present overdispersion leads to overoptimistic tests of

regression effects. This is exactly what poisson model does. Let’s compare with glm {stats} modelling

that uses poisson distribution:

❣❧♠✭❢♦r♠✉❧❛ ❂ ❝❛s❡s ⑦ ❛❣❡ ✰ ②❡❛r ✰ ♦❢❢s❡t✭❧♦❣✭♣②r✮✮✱ ❢❛♠✐❧② ❂ ♣♦✐ss♦♥✱❝❞❛t❛ ❂ ❇❈❞❛t❛✮

Effects Estimate Std.Error z-score Pr(>z)

(Intercept) -10.80955 0.19519 -55.38 <2e-16 ***

age 0.30637 0.01194 25.66 <2e-16 ***

year 0.19490 0.01838 10.60 <2e-16 ***
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The output almost the same to negligible differences of algorithms used, MLE in case of glm() and MCMC

in case of MCLogLin(). It’s important to note that fit of the model and residuals are remarkably better

while sampling ψ as parameter.
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To support deductions with power curves I demonstrate power analysis of this data with 3 values of

ψ which are 0.01 (strong overdispersion simulated), sampled by MCMC as model parameter, and 100

(overdispersion neglected, poisson like approach). Call is the same:

r❡s❁✲▼❈P♦✇❡r✭❝❛s❡s⑦❛❣❡✰②❡❛r✱ ♦❢❢s❡t❂♣②r✱ ❞r❛✇❂✺✵✵✵✱ ❜✉r♥✐♥❂✶✵✵✵✱ ❡❢❢❡❝t❂✧②❡❛r✧✱

s❝❛❧❡❴♠✐♥❂✵✳✹✱ s❝❛❧❡❴♠❛①❂✶✳✷✱ ❞❛t❛❂❇❈❞❛t❛✮

but to model extremes in 2 scenarios I put 0.01 and 100 as ψ values and doing so prevented this par

from sampling.

Power curves with ψ={0.01, modelled, 100} displayed above.

Exemplary power curves support the fact, that overdispersed data are more required as to sample size.

In example independent variables are of numeric class. If one needs to inspect non-linear relationships,

class should be changed either to unordered factor class to examine effect of each birth cohort and

age group, or to ordered factor to elicit non-linear relationships as quadratic, cubic, and higher order

polynomials.

Conclusion: to be on the safe side better use NB2 both for modelling regression effects and power

curve.

Example 2.

It’s ubiquity in medicine, health administration, epidemiology to use standardized indexes. For example,

effectiveness of hospital treatment in US and Canada is assessed by comparison of observed number of

lethal cases against expected. Latter are calculated by applying logistic regression with coefficients that

describe nationwide technology of treatment. Independent variables are comorbidity, stage of disease

in question, gender, and age of patient. Having each treated patient’s characteristics logistic regression

produces risk of passing on for each patient given nationwide technology. Pulling the expected individual

risks together they have expected number of deceased for each department/hospital/union. If observed

number of lethal cases significantly less than expected, the technology of treatment applied in given unit

is better than nationwide. Of course, if one interests in conducive factors it’s possible to model their

influence using offset. This example is based on counts of patient deaths following heart transplant

surgery in 131 hospitals in the US between October 1987 and December 1989. These were analysed

by Christiansen and Morris (1996, 1997)2. Data is also analysed by Peter D. Congdon 3. There are two

variables only: Number of Deaths (y) and Number of Expected Deaths (o) across 131 hospitals. The

emphasis is maid to demonstrate functionality to cope with standardized ratios. Here is the call to

function MCLogLin() with excerpts of output:

Call: MCLogLin(formula = y ~ 1, data = SMdata, offset = o, DIC = TRUE, draw = 1500, burnin = 500)

2Christiansen C, Morris C (1996) Fitting and checking a two-level Poisson model: modeling patient mortality rates in heart
transplant patients, pp 467–501, in Bayesian Biostatistics, eds D Berry, D Stangl. Marcel Dekker, New York.

3Peter D. Congdon. Bayesian Hierarchical Models With Applications Using R (2020) Second Edition. Example 4.5 Hospital
Mortality, p.125-26.
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Effects Estimate Std.Error z-score Pr(>z)

(Intercept) 4.382e-02 7.049e-02 6.216e-01 5.342e-01

phi 7.262e+00 2.646e-02 2.745e+02 0.000e+00

DIC related components:

DIC = 464.7117

pD = 1.836479

meanDev = 462.8752

Devmean = 461.0387

Linear predictor includes intercept only which is correctly assessed to be close to 1 (1.0448) upon

exponentiation. Peter D. Congdon tried Poisson-gamma mixture to model the data with JAGS (package

jagsUI ). The DIC reported for this model is 475 which is close.


	Package ltable 2.0.3. Part 3.
	Ocheredko Oleksandr
	Content:

	FUNCTIONALITY
	Modelling risks, relative risks, standardized ratios.
	Example 1. 
	Example 2.



