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FUNCTIONALITY

1. Constructs tables of counts and proportions out of data sets.

2. Inserts table into Excel and Word documents using clipboard, into LaTeX, HTML, Markdown and
reStructuredText documents by the knitr::kable agency.

3. Molds table into acceptable for log-linear modeling data.frame, co.

4. Performs log-linear modeling.

5. Performs power analysis.

e This version is coded in R language exclusively to support across-systems portability.

e Log-linear and power analyses are enhanced with ability to model risks (rates) and rel-
ative risks (standardized ratios). Modelling survival data with interval censoring is also
supported.
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Modelling interval censored survival data

In the setting of survival analysis, interval censored data occur when an event time is known only up
to an interval. It covers majority of situations with mixed case censoring, that can include left censored,
right censored, uncensored and observations that are censored but neither right nor left censored. The
last type of censoring can occur if a subject is regularly inspected and all that is known is that the
event of interest occurred between check-ups. The standard assumption is that this observation time is
independent of the event of interest, although the observation time may be random or fixed by design.
A classic example of mixed case interval censored datasets is retrospective study presented by Klein
and Moeschberger (1997) . Study was carried out to compare the cosmetic effects of radiotherapy alone
versus radiotherapy and adjuvant chemotherapy on women with early breast cancer. To compare the
two treatments, a retrospective study of 46 radiation only and 48 radiation plus chemotherapy patients
was conducted. Patients was observed initially every 4-6 months, but, as their recovery progressed, the
interval between visits lengthened. The event of interest was the time to first appearance of moderate
or severe breast retraction. As the patients were observed only at some random times, the exact time
of breast retraction is known only to fall within the interval between visits. Data is retrievable from
package interval (data bedeter). 1 described the study to put user in a picture of real world research

setups.

To see how package ltable deals with such setups | simulated interval censored survival data. First |
used Weibull r.n. generator to sample 50 values: 10 with logscale 1.5+, 10 with logscale 1.5, 10 with
logscale 1 and 20 with logscale O. 1.5 and | are regression effects of exposures T (treatment) and
C (comorbidity free status). Shape=1.5 in all groups. Generated values fall in a range from 0.2731 to
26.8083. It’s verifiable given seed=1966. Let’s assume generated values are months. Afterward generated
values transformed to interval censored with year interval width and data grouped with table_ f() and
tableToData() functions. Indicator variables are created for years to estimate baseline hazard rates
hO(year). Finally offset variable is calculated as person-years of survival for each profile, that is, for

each row of the final table. The code is following:

require(1ltable)
set.seed(1966)
shape<-1.5
scalell<-exp(1.5+1)
scalel0<-exp(1.5)
scale01<-exp(1)
scale00<-exp(0)

simDatal<-data.frame( rweibull (n=10, shape, scalell), 1, 1)
simData2<-data.frame( rweibull (n=10, shape, scalel0), 1, 0)
simData3<-data.frame( rweibull (n=10, shape, scale01), 0, 1)
simData4<-data.frame( rweibull (n=20, shape, scale00), 0, 0)

simData<-rbind(simDatal,rbind(simData2, (rbind(simData3,simData4))))

IKLEIN, J. P, MOESCHBERGER, M. Survival Analysis. New York: Springer Verlag, 1997.
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simData$Year<-round(simData$time/12)+1
simGroupData<-simDatal[,-1]
tab<-table_f (simGroupData, "T,C,Year")

tab_p<-tableToData(tab)
tab_s<-tab_p[tab_p$Counts>0,]
tab_s$Year2<-ifelse(tab_s$Year>=2,1,0)
tab_s$Year3<-ifelse(tab_s$Year>=3,1,0)
tab_s$offset<-c(rep(50,4) ,rep(10%2,2),6%3)

tab_s

T C Year Counts Year2 Year3 offset
1 00 1 20 0 0 50
2 01 1 10 0 0 50
3 10 1 9 0 0 50
4 11 1 1 0 0 50
7 10 2 1 1 0 20
8 11 2 3 1 0 20
1211 3 6 1 1 18

Data supplied with file of fsetdata.rda (data SimData). The call to function MCLogLin() is as follows:

require(ltable)

data(SimData)

res<-MCLogLin( Counts ~ Year2 + Year3 + T + C,
SimData, offset, 5000)

Call:

MCLogLin(formula = Counts ~ Year2 + Year3 + T + C, data = SimData,
offset = offset, draw = 5000)

Coefficients:

Estimate Std.Error |z-scorel Pr(>lzl)
(Intercept) -5.100e-01 5.028e-01 1.014e+00 3.104e-01
Year2 1.160e-01 8.249e-01 1.406e-01 8.882e-01
Year3 1.906e+00 9.589e-01 1.988e+00 4.681e-02
T1 -1.305e+00 6.741e-01 1.936e+00 5.283e-02
C1 -7.537e-01 5.922e-01 1.273e+00 2.031e-01
phi 3.559e+00 1.946e-01 1.829e+01 9.563e-75
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Model fit:

MCMC fitting

Samplers : Gibbs for expected counts, Slice for regr. coeff. and inv.var.par. phi
Language: R

Jacobian reciprocal condition number = 0.1203108
chisq/n = 0.09574534

Deviance= 0.0007742469

NULL Deviance= 0.400395

Log.likelihood= -18.10798

AIC(1) 46.21597

AIC(n) 6.602281

BIC = 45.94552

Residuals report ( R is individual risk):

Row Ovserved R Predicted R Raw Residual Pearson Residual Anscombe Residual

1 0.40000 0.40074 -0.00074 -0.0011 -0.0020
2 0.20000 0.20096 -0.00096 -0.0021 -0.0033
3 0.18000 0.16271 0.01729 0.0419 0.0647
4 0.02000 0.03687 -0.01687 -0.0874 -0.1254
5 0.05000 0.08745 -0.03745 -0.1251 -0.1931
6 0.15000 0.11070 0.03930 0.1163 0.1673
7 0.33333 0.32762 0.00571 0.0095 0.0164

From the output we can deduce that covariance matrix of model parameters is not stable enough and
sensitive due to the paucity of profiles. It engenders problems discussed below. Fit to the data is good
as chi-square test is less than | per degree of freedom with actual value of 0.09. That is supported by
residuals report.

Next, regression effects are of expected directions and magnitudes. Weibull model regression effects of
variables T and C are positive (increase survival), that correspond to negative effects in NB2 model
(both variables reduce the risk of event). Magnitude of T effect is larger than that of C, that also agrees
with true generation scenario.

Intercept is confluent with baseline hazard rates for first year. Effects Year2 and Year3 depict augmented
baseline hazards in these years against previous. Therefore one can see that each consecutive year
baseline hazard grows.

All effects are not significant. Let’s consider power analysis to elicit whether it's due to insufficient
sample size or the model just can’t substantiate underlying mechanism. Let’s do power analysis for
effect of C, using scale_min=15, scale_max=4:
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require(ltable)
load("offsetdata.rda")
res<-MCPower( Counts ~ Year2 + Year3 + T + C, (05
SimData, offset, 5000, 1.5, 4)
plot(res, 3)
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Note, that we put effect quoted with the name that appears in design matrix and output of M C LogLin()
by adding | to C to show that it is contrast of C=1 against C=0.

With the growth of sample size the regression effect of C obviously gains significance. The irregularity
of curves explained by over-sensitivity of covariance matrix to data with Jacobian reciprocal condition

number less than 1.

So power analysis helps to illustrate the makings of NB2 to reveal and substantiate true data generation

mechanism of survival data.
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Joint hypotheses testing

In most studies there is a need to test several dependent hypotheses. Dependency may be structural
or sequential. Log-linear model can be put to the task with tabulated data. Generally speaking if there
is a system of equations modelling several outcomes y ..y K :

y1 = fl (ysetl 5 Xsetl) (1)

Y2 = f2 (ysetm Xsetg) (2)
3)
yK = fK(ySEtK)XSEtK) (4)

and data is of tabulated format we can apply log-linear model to test several related hypotheses. Let’s
have two dependent hypotheses based on Titanic data. First concerns the checking of policy “safety
to child and woman” which can be formulated as class of passengers accommodation regressed on age
and gender. Another related hypothesis is that probability of survival depends on class, age, and their
combination (second order effect). To test these hypotheses jointly we include all relevant effects into

linear predictor. Code is as given:

require(ltable)
TitanicData <- as.data.frame(datasets::Titanic)
names (TitanicData) [6] <- "Counts"

TitanicData$Class <- factor(TitanicData$Class,

FALSE)
set.seed(1966)
res<-MCLogLin( Counts ~ Class * Age + Class * Sex + Survived *
Class * Age, TitanicData)
Call:

MCLogLin(formula = Counts ~ Class * Age + Class * Sex + Survived *

Class * Age, data = TitanicData)

Coefficients:

Estimate Std.Error |z-scorel Pr(>|zl)
(Intercept) -1.348e+01 7.589e+00 1.776e+00 7.580e-02
Class2nd -6.185e+00 1.364e+01 4.534e-01 6.503e-01
Class3rd 1.739e+01 7.620e+00 2.282e+00 2.250e-02

ClassCrew -4.860e+01 1.705e+01 2.850e+00 4.370e-03
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AgeAdult 1.798e+01 7.524e+00 2.389e+00 1.688e-02
SexFemale -1.181e+00 1.359e+00 8.685e-01 3.851e-01
SurvivedYes 1.532e+01 7.564e+00 2.026e+00 4.279e-02
Class2nd:AgeAdult 6.522e+00 1.361e+01 4.791e-01 6.319e-01
Class3rd:AgeAdult -1.589e+01 7.592e+00 2.094e+00 3.630e-02
ClassCrew:AgeAdult 5.062e+01 1.715e+01 2.952e+00 3.153e-03
Class2nd:SexFemale 1.023e+00 1.844e+00 5.547e-01 5.791e-01
Class3rd:SexFemale 6.154e-01 1.624e+00 3.789e-01 7.047e-01
ClassCrew:SexFemale -2.709e+00 2.089e+00 1.296e+00 1.948e-01
Class2nd:SurvivedYes 7.323e+00 1.367e+01 5.358e-01 5.921e-01
Class3rd:SurvivedYes -1.596e+01 7.650e+00 2.087e+00 3.691e-02
ClassCrew:SurvivedYes -7.716e+01 2.681e+01 2.878e+00 4.008e-03
AgeAdult:SurvivedYes -1.386e+01 7.635e+00 1.816e+00 6.940e-02
Class2nd:AgeAdult:SurvivedYes -9.235e+00 1.374e+01 6.723e-01 5.014e-01
Class3rd:AgeAdult:SurvivedYes 1.357e+01 7.808e+00 1.737e+00 8.230e-02
ClassCrew:AgeAdult:SurvivedYes 7.599e+01 2.675e+01 2.841e+00 4.503e-03
phi 1.007e+00 7.319e-02 1.375e+01 4.795e-43
Model fit:

MCMC fitting

Samplers : Gibbs for expected counts, Slice for regr. coeff. and inv.var.par. phi
Language: R

Jacobian reciprocal condition number = 0.001705213
chisq/n = 0.002269504

Deviance= 0.1260396

NULL Deviance= 2.510553

Log.likelihood= -118.1038

AIC(1) = 276.2076

AIC(n) = 8.631486

BIC = 305.5223

Residuals report (Y denotes Counts):

Row Ovserved Y Predicted Y Raw Residual Pearson Residual Anscombe Residual

0 0.009 -0.009 -0.093 -0.160
2 0 0.001 -0.001 -0.035 -0.056
3 35 34.893 0.107 0.003 0.020
4 0 0.000 -0.000 -0.000 -0.000
5 0 0.006 -0.006 -0.075 -0.126
6 0 0.002 -0.002 -0.047 -0.077
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17 17.096 -0.096 -0.005 -0.028

0 0.000 -0.000 -0.000 -0.000

118 117.051 0.949 0.008 0.079

10 154 153.304 0.696 0.005 0.049
11 387 386.438 0.562 0.001 0.021
12 670 669.435 0.565 0.001 0.015
13 4 4.648 -0.648 -0.127 -0.447
14 13 13.755 -0.755 -0.053 -0.260
15 89 89.331 -0.331 -0.004 -0.033
16 3 3.544 -0.544 -0.136 -0.442
17 5 4.912 0.088 0.016 0.057
18 11 11.073 -0.073 -0.006 -0.029
19 13 13.305 -0.305 -0.022 -0.107
20 0 0.000 -0.000 -0.000 -0.000
21 1 1.183 -0.183 -0.114 -0.274
22 13 12.822 0.178 0.013 0.063
23 14 13.677 0.323 0.023 0.110
24 0 0.000 -0.000 -0.000 -0.000
25 57 57.748 -0.748 -0.013 -0.100
26 14 14.634 -0.634 -0.042 -0.209
27 75 75.320 -0.320 -0.004 -0.036
28 192 192.549 -0.549 -0.003 -0.033
29 140 139.123 0.877 0.006 0.065
30 80 79.351 0.649 0.008 0.070
31 76 75.802 0.198 0.003 0.022
32 20 19.451 0.549 0.028 0.149

Warning in MCLogLin(formula = Counts ~ Class * Age + Class * Sex + Survived * :

MCMC based errors are used

Based on output we can accept both hypotheses except first on part of gender.
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