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Part 1. Shaping tables and NB2 modelling of counts
Part 2. Power analysis
Part 3. Modelling risks, relative risks, standardized ratios
Part 4. Modelling interval censored survival data. Joint hypotheses testing
Part 5. Convergence diagnostic based on renewal theory

FUNCTIONALITY

1. Constructs tables of counts and proportions out of data sets.
2. Inserts table into Excel and Word documents using clipboard, into LaTeX, HTML, Markdown and

reStructuredText documents by the knitr::kable agency.
3. Molds table into acceptable for log-linear modeling data.frame, co.
4. Performs log-linear modeling.
5. Performs power analysis.

• This version is coded in R language exclusively to support across-systems portability.
• Log-linear and power analyses are enhanced with ability to model risks (rates) and
relative risks (standardized ratios). Modelling survival data with interval censoring is also
supported.

• MCMC stationarity diagnostic based on renewal theory is served by function renewal().
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MCMC stationarity diagnostic based on renewal theory

The basis of renewal theory is the definition of small sets as atoms with non-zero probabilities. Theory
can serve the purpose of convergence control through small sets as in Robert,Ch.P.(1995) 1. The use
of small sets (hereafter I address them as states) are wider and they can be effectively applied as
discretization technique.

The method has two main merits. Firstly, it is couched into strong mathematical reasoning and less
influenced by analyst’s experience. Secondly, the resultant solutions are not asymptotic, therefore not
biased by inherent error of limit theorems.

Technique is based on secondary chains. First we code MCMC chain into states. Suppose we randomly
choose state A10. Secondary chain (Si) is a fragment of original chain and includes chain of states between
consecutive realizations of A10. Given index i, it’s fragment from the ith instance of A10 to the (i+ 1)th.

First of all, algorithm finds nstat that is the position in original chain when we are close enough (bounded
by ϵ1) to stationary distribution πX , i.e.,

∥Pnstat
x0 − πX∥ ⩽ ϵ1 (1)

where ∥...∥ is total variation norm. Therefore from position nstat on one may concider MCMC chain as
being distributed almost from a stationary distribution πX .

Secondly, we would like to achieve sufficiently small (bounded by ϵ2) variance of the estimator h(X). It
can be done by finding the quantity nVar fulfilling the condition where ℓ = nV ar − nstat:

V ar(
1

ℓ

nV ar∑
nstat+1

h(Xk)− EπX
h(X)) ⩽ ϵ2 (2)

By finding ℓ we have a necessary length of original chain started at position nstat that satisfies sufficiently
small variance of the estimator.

Conditional distribution of X|Y has the same information as marginal distribution of X given the
knowledge on p(y):

πX(x) =

∫
y

p(x)X|Y (x|y)pY (y)dy

So one can use any state Y as the basis to approximate πX(x) of the chain. Useful lemma used by
algorithm gives us conditional formulation of (1). Suppose that χ is a finite space and A1 is a known
atom in χ. If we denote Pn

A1
(X) the conditional probability of having state X at position n of chain given

1Robert,Ch.P.(1995) Convergence Control Methods for Markov Chain Monte Carlo Algorithm. Statistical Science 10, 3.
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state A at beginning (A1) we have

∑
Xϵχ

|Pn
A1

(X)− EπX |A1
| ⩽ 2Px(ζ

(1)
1 ⩾ n) +

n−1∑
j=0

Px(ζ
(1)
1 = j) ∗

(
n−j−1∑
k=1

|P k
A1

(A1)− πX(A1)

∣∣∣∣∣ ·
PA1

(
ζ
(1)
1 ⩾ n− j − k) + πX(A1)EA1(ζ

(1)
1 − (n− j))+

) (3)

Given atom A1 for any state X in χ

πX |A1 = πX(A1)

∞∑
n=0

PA1
(Xn = X, ζ

(1)
1 ≥ n) (4)

STEP1 To turn (4) to practicality they elaborated 3 obvious inequalities:

∥Pn
A1

(A1)− πX(A1)∥ ⩽ M1r
−n
1 (5)

PA1
(ζ

(1)
1 ⩾ n) ⩽ M2r

−n
2 (6)

Px(ζ
(1)
1 = n) ⩽ M3r

−n
3 (7)

After applying (5-7) to inequality (3) they arrived at (8)

2M3r
1−n
3

r3 − 1
+

πX(A1)M2M3r3(r
−n
3 − r−n

2

(r2 − 1)(r2 − r3)
+

M1M2M3

(r2 − r1)

(
r1r3(r

−n
3 − r−n

1 )

(r1 − r3)
+

r2r3(r
−n
3 − r−n

2 )

(r3 − r2)

)
⩽ ϵ1

(8)

Using (8) one can ascertain the starting point in chain satisfying (1) with given precision bound of ϵ1

STEP2 Besides starting point in chain we want to have the length of the chain to satisfy (2). Instrumental
idea is to use (2) strightforwardly to estimate ℓ. I devided chain on secondary chains (Si) and applied
the equality of variance formulation for iid z:

V ar(
∑

(z1, z2, ...zn)) = V ar(z1) + V ar(z2)+, ..., V ar(zn)

But instead of variances we add up sums of squares (SS), which by same logic are independent across
secondary chains. We have as many components as there are secondary chains. Finally we can choose
lenght of chain that satisfies (2), i.e.

ℓ =

√∑nV ar
k=1 SSk

ϵ2
(9)

Estimation of r1, r2, r3,M1,M2,M3 is based on function nloptr() rendered by <nloptr> package, my
gratitude goes to Steven G. Johnson, Aymeric Stamm and team members.

Call supports several arguments: renewal(x, StatesNum=10, Astate=NULL, nForStart = 3000, ep-
silon1=0.05, epsilon2=0.05)
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• x is the name of the numeric vector containing
original chain

• StatesNum is positive integer that indicates
the number of states to classify chain values
into, max value is 100; to choose StatesNum
one should consider the adequate number of
unique intervals chain values can be suitably
represented by

• Astate is positive integer from 1 to StateNum
that defines state to base calculation on; there
may be small differences in results under dif-
ferent base states, see examples for details; by
default it is median state value

• nForStart is positive integer that indicates the
maximum distance from beginning of chain to
consider in finding nstat value

• epsilon1 is value of closeness to stationary dis-
tribution at position n of chain, it is used to
find nstat, see (1)

• epsilon2 is upper bound of variance of estima-
tor, it is used to find nVar, see (2)

EXAMPLES

require(ltable)
data(tdata, package="ltable")
res1<-MCLogLin(Counts~smoker+contraceptive+

tromb +contraceptive*tromb, data=
tdata, draw=5000, burnin=500)

renewal(res1[,1], StatesNum=10, Astate=1)

[1] 2400 694

renewal(res1[,1], StatesNum=10, Astate=5)

[1] 1674 549

renewal(res1[,1], StatesNum=10, Astate=10)

[1] 2400 489

renewal(res1[,14], StatesNum=10, Astate=2)

[1] 1516 908

renewal(res1[,14], StatesNum=10, Astate=6)

[1] 2400 1084

renewal(res1[,14], StatesNum=10, Astate=9)

[1] 2400 962

renewal(res1[,1], StatesNum=50, Astate=1)

[1] 2400 3141

renewal(res1[,1], StatesNum=50, Astate=5)

[1] 2400 3141

renewal(res1[,1], StatesNum=50, Astate=10)

[1] 2400 3141

renewal(res1[,14], StatesNum=50, Astate=2)

[1] 2400 5437

renewal(res1[,14], StatesNum=50, Astate=6)

[1] 2400 5295

renewal(res1[,14], StatesNum=50, Astate=9)

[1] 2400 5485

I demonstrate the functionality with results of ap-
plying MCLogLin() to data tdata saved to object
res1 of class “matrix” “array” that contains 5000
sampled values of 14 model parameters stored by
columns. First parameter is lambda1, last is phi,
counts heterogeneity factor. Data and parameters
are described in Part 1. From the outputs one can as-
certain minor variability dependent on chosen state
as the basis for calculus. Conspicuous augmentation
in required length of chain relates to enlargement in
number of considered states which is obvious. More
states lead to more lengthy secondary chains with
larger SSi. Even more expressed effect is rendered
by length of original chain. Let’s look at the results
of the same model but with samples of size 20000.
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require(ltable)
data(tdata, package="ltable")
res2<-MCLogLin(Counts~smoker+contraceptive+

tromb +contraceptive*tromb, data=
tdata, draw=20000, burnin=500)

renewal(res2[,1], StatesNum=10, Astate=1)

[1] 2400 1374

renewal(res2[,1], StatesNum=10, Astate=5)

[1] 1668 1192

renewal(res2[,1], StatesNum=10, Astate=10)

[1] 2400 1403

renewal(res2[,14], StatesNum=10, Astate=2)

[1] 1518 2122

renewal(res2[,14], StatesNum=10, Astate=6)

[1] 2400 2675

renewal(res2[,14], StatesNum=10, Astate=9)

[1] 2400 2913

renewal(res2[,1], StatesNum=50, Astate=1)

[1] 2400 6894

renewal(res2[,1], StatesNum=50, Astate=5)

[1] 2400 6894

renewal(res2[,1], StatesNum=50, Astate=10)

[1] 2400 7083

renewal(res2[,14], StatesNum=50, Astate=2)

[1] 2400 15619

renewal(res2[,14], StatesNum=50, Astate=6)

[1] 2400 14876

renewal(res2[,14], StatesNum=50, Astate=9)

[1] 2400 14984

This regularity one can explain by STEP2 algorithm.
The lengthier the chain the more secondary chains
the more SSi addends are there in nominator of
(9). Should one worry about such dependency?
Personally me, I don’t think so. If criteria ϵ1, ϵ2 are
satisfied one can use the chain starting from nstat
of recommended length or lengthier. One should
worry if the required length surpasses length of
chain. This bears evidence on failure of the model to
produce chain satisfying bound criterion of variance.
One can not resolve the situation by supplying
lengthier chain to renewal(), the result would not
change.

Dependencies of nstat and ℓ on criteria ϵ1, ϵ2 for
chain of parameter lambda1 for sample size 5000
and basis state 5 are graphed below.

library(ggplot2)
library(grid)
nstat<-function(eps){
ltable::renewal(x=res1[,1], nForStart=3000,

Astate=5, epsilon1=eps)[1]
}
chainlength<-function(eps){
ltable::renewal(x=res1[,1], nForStart=3000,

Astate=5, epsilon2=eps)[2]
}
y<-seq(from=0.1,to=0.0001,by=-0.005)

x1<-sapply(y, nstat)
x2<-sapply(y, chainlength)
a<-ggplot(data.frame(epsilon1=y, nstat=x1),

aes(nstat,epsilon1)) +geom_line()
b<-ggplot(data.frame(epsilon2=y, length=x2),

aes(length,epsilon2)) +geom_line()
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grid.newpage()
pushViewport(viewport(layout = grid.layout(2,1)))
print(a, vp = viewport(layout.pos.row = 1))
print(b, vp = viewport(layout.pos.row = 2))
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