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FUNCTIONALITY

1. Constructs tables of counts and proportions out of data sets.

2. Inserts table into Excel and Word documents using clipboard, into LaTeX, HTML, Markdown and

reStructuredText documents by the knitr::kable agency.

3. Molds table into acceptable for log-linear modeling data.frame, co.

4. Performs log-linear modeling.

5. Performs power analysis.

• This version is coded in R language exclusively to support across-systems portability.

• Log-linear and power analyses are enhanced with ability to model risks (rates) and rel-

ative risks (standardized ratios). Modelling survival data with interval censoring is also

supported.
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Power analysis

Outlines of offered power study methodology can

be found in ISDSA paper.

Use function MCPower():

MCPower(formula, data, offset, contrasts =

NULL, XLB = −100, XUB = 100, a =

0.1, b = 0.1, scale_min = 1, scale_max =

5, effect, p_alpha = 0.05, draw =

10000, burnin = 3000)

formula

• Incorporation of formula based approach fa-

cilitates extracting true influence of hypothe-

sized effect by catching other intermingled in-

fluences. It’s up to investigator’s acumen and

experience in process under study to delineate

and separate hypothesized effect by appropri-

ate data collection design and model formula-

tion.

• The issue resolved is contrasts that constitute

effect. Mostly investigator is interested in con-

trasts rather than effect. Say, if one proceeds

with clinical trial to test medicines A, B, C, D

it’s A (new drug) against traditional set that

usually implied. If the optimal dosage is under

consideration, they are contrasts that help out

(average against min, max; max against others,

etc.).

scale_min, scale_max

Indicate the range of sample sizes. scale_min is the

smallest number of sample size scale range, 1 sig-

nifies the given data sample size (observed total

counts). scale_max is maximal sample size consid-

ered in power analysis. 5 by default means 5 times

observed counts. The inspected sample size range

defined by scale_min - scale_max automatically is

divided into 11 consecutive values investigated by

function. Given the results one can change sample

size range, for example to scrutinize some partic-

ular interval to ensure power and p-value.

effect

Represents quoted effect tested by hypothesis; it

should be one from the model formula, of sec-

ond or higher order, introduced by * delimiter, i.e.,

ły*xž, ły1*y2*x1*x2ž, ły1*y2ž, etc.

offset

Permits to model risks, relative risks, interval cen-

sored survival data

p_alpha

Serves to signify Z to check simulated z-scores

against in power analysis, 0.05 by default.

contrasts

Serves to choose types of contrasts to study ef-

fects of factors, the same with glm {stats}, or-

thogonal polynomials by default.

draw

Indicate number of samples to draw (chain length)

burnin

Indicate number of initial samples to discard. draw

should exceed burnin by at least 3000.

Example

Let’s begin with Tromboembolism Data.

♦♣t✐♦♥s✭✇✐❞t❤❂✹✵✮

r❡q✉✐r❡✭❧t❛❜❧❡✮❀ ❞❛t❛✭t❞❛t❛✮

♣r❡s❁✲❧t❛❜❧❡✿✿▼❈P♦✇❡r✭❈♦✉♥ts⑦

s♠♦❦❡r ✰❝♦♥tr❛❝❡♣t✐✈❡ ✰tr♦♠❜ ✰

❝♦♥tr❛❝❡♣t✐✈❡✯tr♦♠❜✱ ❞❛t❛❂t❞❛t❛✱

❡❢❢❡❝t❂✧❝♦♥tr❛❝❡♣t✐✈❡✯tr♦♠❜✧✱

s❝❛❧❡❴♠✐♥❂✵✳✹✱ s❝❛❧❡❴♠❛①❂✶✳✺✮

❧t❛❜❧❡✿✿♣r✐♥t✭♣r❡s✱ ❝❤♦✐❝❡❂✧♣♦✇❡r✧✮

https://meeting.isdsa.org/index.php/isdsa/2019/paper/viewPaper/3
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What we can deduce from the result is that 235 total counts is enough to secure alpha and beta errors.

I suggest the most secure Q0.025 quantile to weight decision on. So 235 secures Z=1.96 and power

0.9 given Q0.025 estimates. Results of power analysis backed up with MCMC delivered approach, see

Ocheredko O.M. MCMC Bootstrap Based Approach to Power and Sample Size Evaluation..

Discussion

The log-linear estimates of contraceptiveYes*trombTrombol effect tested to be significant. Is it not strong

enough evidence of association? Why should we collect almost 1.5-fold as many data? The answer of

course is related to the specifics of the sample. The basic design itself is a sample, not status quo that

represents true frequencies ratios in population. Therefore, we have to secure that the sample data

brings in enough information to overpower sample specifics. Of course, the more complex design is

the larger sample variation has to be outbalanced by signal, the larger sample size is required.

The original data is one of the random snapshots of reality and we have to put as much credit as

sensible to it. Not all snapshots of size 174 guarantee a 95% CI with zero excluded. Using BUGS MCMC

realization it was indicated that the sample size of 260 affords enough power to assure the significance

of the association in practically all samples. The same logic is behind any application of power analysis.

The other lay belief is that with the increase of sample size any association is doomed to be significant.

For sure, it is not, and the strength of power analysis is to determine the optimal sample size of

hypothesis testing. The power analysis assures that given H0 is true there is no prospect of decisive

augmentation of power and significance following the increase in sample size that will shortly be

demonstrated. Before turning to another example the graphic output produced by function plot {ltable}

is paneled:

❧t❛❜❧❡✿✿♣❧♦t✭♣r❡s✱ st❡♥❝✐❧❂✶✮
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https://www.amazon.com/gp/product/1946728039/
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Example

This is example of no observed association

❚✐t❛♥✐❝❉❛t❛❁✲❛s✳❞❛t❛✳❢r❛♠❡✭❞❛t❛s❡ts✿✿❚✐t❛♥✐❝✮

♥❛♠❡s✭❚✐t❛♥✐❝❉❛t❛✮❬✺❪❁✲✧❈♦✉♥ts✧

♣r❡s❁✲❧t❛❜❧❡✿✿▼❈P♦✇❡r✭❈♦✉♥ts⑦❈❧❛ss✰❆❣❡✰❙✉r✈✐✈❡❞✰❈❧❛ss✯❙✉r✈✐✈❡❞✱ ❛❂✵✳✶✱ ❜❂✵✳✶✱

❞r❛✇❂✶✵✵✵✵✱ ❞❛t❛❂❚✐t❛♥✐❝❉❛t❛✱ ❡❢❢❡❝t❂✧❈❧❛ss✯❙✉r✈✐✈❡❞✧✮

❧t❛❜❧❡✿✿♣❧♦t✭♣r❡s✱ st❡♥❝✐❧❂✸✮
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Let’s consider Titanic data, available in package

datasets and accessible by datasets::Titanic. This

data set provides information on the fate of pas-

sengers on the fatal maiden voyage of the ocean

liner ‘Titanic’, summarized according to economic

status (class), sex, age and survival. Many well-

known factsÐfrom the proportions of first-class

passengers to the ‘women and children first’ pol-

icy, and the fact that that policy was not entirely

successful in saving the women and children in the

third classÐare reflected in the survival rates for

various classes of passenger. Let’s conduct power

analysis focused on effect of Class (1st, 2nd, 3rd,

crew ) of passenger on Survival (Yes, No). From the

graphical output it’s obvious that survival doesn’t

show significant difference between 3rd and 2nd

passengers accommodations and there is no way

to prove its significance by augmenting the sam-

ple. Indeed this is example of impossibility to con-

sider sample size expansion. So why not to put

it to rest? Just because absence of significance

can be ascribe to small sample size. Having sup-

port of power analysis we are perfectly aware that

should we have opportunity to enlarge the sample

test would not change. The opposite conclusion is

driven by power analysis on survival differences

between 3rd class and 1st class passengers as well

as between 3rd class passengers and crew. In par-

ticular illustrative is 3rd class and 1st class pas-

sengers difference which non-significance indeed

can be explained by sheer paucity of information.

Should we be able to expand sample the difference

would augment its significance to the point of be-

ing significant. As demonstrated by power curve

the chance to detect it would be around 80% .

What do we make of it?

1. There is no chance to observe significant as-

sociation by accumulating data if used tab-

ulated design reproduces natural frequencies

that indicate no natural relationship.

2. There is no increase in both significance and

power with sample size growth given H0 is

true.

3. Power and significance may behave differently

with sample size dynamic, so that we can’t

play one against the other as classical power

methodology implies. Usually one is less re-

sponsive than another and it is former that

defines necessary data load.

What is there under the hood?

The clue is Hessian estimate that provides error

terms (for testing complex effect relevant covari-

ance structure is used). The Hessian decomposition

can be shown is the sum of two components. The

first is

−
ψ ∗ eβ∗X

(eβ∗X) + ψ
XX

T

It helps to understand errors dynamic with grow-

ing sample size. The only growing constituent is

eβ∗X which substantiates slight (dependent on NB2

inverse dispersion par ψ and sample size) initial de-

crease and then flatten.

Second component is proportionate to ratio of dif-

ference between observed and expected counts to

expected counts. Therefore if the model leaves

small residuals or constant ratio with growing

sample size the addend has no influence on errors

dynamic.

If regression effect is influential and significant it

grows in magnitude with growing sample size. In

such case given stability of error we would have

increasing test Z-score. Effect would not gain mag-

nitude in the absence of influence and we would

have flatten test curve.



8 PACKAGE LTABLE 2.0.3. PART 2.

How overdispersion influences power curve?

Roughly overdispersion is in effect with par ψ less

than 10. With ψ less than 1 it strongly influences

p-values. Overdispersion is caused by data hetero-

geneity and by unbalanced designs. It takes place

almost in all real world data sets. Overdispersed

data are more required as to sample size. Two

effects of ovedispersion are:

• It’s obvious from formula, that with decrease

in ψ errors of regression effects increase.

• Furthermore, the larger overdispersion, the

slower increase of power curve and more

rapidly it levels off.

Overall, power analyses that don’t consider

overdispersion are too optimistic. The magnitude

of effect in question should be sufficient to over-

come overdispersion. Due to overdispersion weak

effects engender power curves that never reach

predestined levels of power . To elicit such one

needs design refinement.

Overview of approaches to power cal-

culus of tabulated data

Two approaches regularly suggested are:

1. Logistic regression approach with effect size log

odds ratio (ad-hoc power analysis).

2. Contingency table approach with effect size

based on noncentrality parameter for chi-square

distribution (post-hoc power analysis).

1. Logistic regression approach

Formulas for sample size n use a guess for π̂ = π(x)

and the distribution of X. The effect size is the

log odds ratio τ comparing π(x) to π(x+ sx), the

probability at a standard deviation above the mean

of x. For a one-sided test when X is approximately

normal, Hsieh (1989)1 derived

n = [zα + zβ ∗ exp(−τ2/4)]2(1 + 2π̂δ)/(π̂τ2),

where

δ = [1 + (1 + τ2)exp(5τ2/4)]/[1 + exp(−τ2)/4].

The value n decreases as π̂ → 0.50 and as |τ | in-

creases.

Given several predictors first multiple correlation

R is calculated between the predictor X of interest

and the others in the model. Then formula for n

divides by (1−R
2). In that formula, π̂ is evaluated

at the mean of all the explanatory variables, and

the odds ratio refers to the effect of X at the mean

level of the other predictors.

2. Contingency table approach2

When hypotheses are false, squared normal and

chi-square and G2 statistics have large-sample

noncentral chi-squared distributions. Suppose that

H0 is equivalent to model M for a contingency ta-

ble. Let πi for model M converges, where
∑

i πi =∑
i πi(M) = 1. For a multinominal sample of size n,

the noncentrality parameter for chi-square statis-

tic equals

λ = n
∑

i

[πi − πi(M)]2

πi(M)

This has the same form as chi-square statistic,

with πi in place of the sample proportion pi and

πi(M) in place of π̂i. The noncentrality parameter

for G2 equals

λ = 2n
∑

i

πilog
πi

πi(M)

When H0 is true, all πi = πi(M). Then, for ei-

ther statistic, λ = 0 and the ordinary (central) chi-

1Hsieh, F. (1989). Sample size tables for logistic regression.
Statistics in Medicine. Volume 8, Issue 7. P. 795-802

2Agresti, A. (2013). Categorical Data Analysis. 3rd ed. (Wiley
series in prob. and stat.; 792).
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squared distribution applies. Finally, power equals

P [χ2

ν,λ > χ2

ν(α)]

These two approaches to power calculus of tabu-

lated data suffer from important flaws:

1. No design information incorporated (XX)

2. No overdispersion/heterogeneity parameters

3. α and β errors are interchangeable

4. No accommodation of growing magnitude of ef-

fect size with growing sample

How to read power/test curves

See-saw dynamic of either power or test curves is

caused by Jacobian singularity, that indicates so-

lution instability.

Flat profiles given low test or power values are

indicative for insignificance of tested effect.

Flat profiles with z-values above 2 or power val-

ues that exceed 0.8 are indicative for significance

of tested effect. On such occasions decrease both

scale parameters to inspect smaller samples.
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