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Abstract

We provide a brief summary of attribute control charts along with a description
of how they are constructed using the acc function in the R package rQCC. In
addition, various traditional attribute control charts such as p, np, c, u, g, h, and
t can be easily constructed using the acc function.

1 Introduction

In many practical applications, attribute control charts are widely used in the scenario
where the quality characteristics cannot be conveniently measured and/or represented.
Attribute (or count) data deal with quality characteristics, such as color, types of de-
sign, defective or non-defective, conforming or nonconforming, etc. In general, it is
easier, cheaper, and faster to collect attribute data than quantitative data, whereas at-
tribute data are less informative and precise. For example, the fraction or percentage of
nonconforming units does not provide any information in which the measurements are
centered and how dispersive they are.

Attribute control charts can also be constructed based on the idea of the traditional
Shewhart control charts. These are the control charts for the fraction of nonconforming
units (p chart), for nonconformities (c chart) and for nonconformities per unit (u chart).
The traditional Shewhart-type control charts consist of the upper control limit (UCL),
the center line (CL) and the lower control limit (LCL). They have the form of CL±g ·SE,
where the American Standard is based on g = 3 with a target false alarm rate of 0.027%
and the British Standard is based on g = 3.09 with a target false alarm rate of 0.020%.
The UCL is given by CL + g · SE and the LCL is CL− g · SE.

In this note, we consider two kinds of attribute control charts for fraction non-
conforming and for nonconformities (defects), which are also called the p and u charts,
respectively. The Shewhart-type attribute control charts are constructed under the tacit
assumption that the normal approximation to the binomial distribution is acceptable.
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In what follows, we provide the construction of the p and u control charts based on the
traditional Shewhart-type control charts and implement these charts in the R package
rQCC.

2 The p and np charts

The p chart is usually used to monitor fraction nonconforming. Using this p chart, it is
also available to construct the control chart (np chart) for the number of nonconforming
instead of fraction nonconforming.

It is assumed that we have m samples and that the ith sample have either the
equal number of observations n (balanced case) or different number of observations ni
(unbalanced case) for i = 1, 2, . . . ,m. For notational simplicity, let Xi be the number of
nonconforming units in the ith sample (subgroup) from a stable manufacturing process.
We assume that Xi are independent and identically distributed according to the binomial
distribution with the sample size n or ni and the Bernoulli probability p.

2.1 The conventional p chart

Let p̂k = Xk/nk. We have E(p̂k) = p and Var(p̂k) = p(1 − p)/nk. To construct the
control charts of the form CL± g · SE, we consider the relation

p̂k − E(p̂k)√
Var(p̂k)

= ±g,

which showed that the control limits for the conventional Shewhart-type p chart with
nk are given by

p± g

√
p(1− p)
nk

. (1)

It is worth noting that the value of the parameter p is unknown in practice. To tackle
this issue, we combine all the subgroups and estimate p by

p̄ =

∑m
i=1Xi∑m
i=1 ni

. (2)

Replacing p in (1) with p̄ provides the control limits of the p chart

p̄± g

√
p̄(1− p̄)
nk

. (3)
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Since the control limits should be between zero and one, the control limits for the p
chart are actually given by

UCL = min

p̄+ g

√
p̄(1− p̄)
nk

, 1

 ,

CL = p̄,

LCL = max

p̄− g
√
p̄(1− p̄)
nk

, 0

 .

For the case of the known p, use the known value instead of p̄ in the above.
For example, one can obtain the control limits of the conventional p chart using the

acc function in the R package rQCC.

> acc(x, n, type="p")

The conventional np chart is easily obtained by multiplying n and the control limits
of the conventional p chart. It should be noted that this np chart is appropriate only
when samples are balanced. Thus, we have the control limits for the np chart as follows.

UCL = min
{
np̄+ g

√
np̄(1− p̄), n

}
,

CL = np̄,

LCL = max
{
np̄− g

√
np̄(1− p̄), 0

}
.

One can obtain the control limits of the conventional np chart by setting type="np" in
the acc function.

2.2 The p chart based on the Wilson confidence interval

In the statistics literature, Equation (3) is the most commonly-used interval for the
Bernoulli parameter p and is also related to the Wald confidence interval for p; see [1].
However, it is well-known that the Wald confidence limits are unsatisfactory for small
n. See the references in [1, 2, 3]. Wilson [4] obtained an improved confidence interval
by using the idea of directly inverting a test statistic.

Park [5] introduced an improvement of the p chart based on the approach of Wil-
son [4]. When p is known, the control limits with the sample size nk are given by

p+ g2/(2N)

1 + g2/N
± g

1 + g2/N

√
p(1− p)
nk

+
g2

4nkN
,

where N =
∑m
i=1 nk. When p is unknown, the control limits are then given by

p̄+ g2/(2N)

1 + g2/N
± g

1 + g2/N

√
p̄(1− p̄)
nk

+
g2

4nkN
,
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where p̄ is given in (2). Since the control limits should be between zero and one, the
control limits are actually given by

UCL = min

 p̄+ g2/(2N)

1 + g2/N
+

g

1 + g2/N

√
p̄(1− p̄)
nk

+
g2

4nkN
, 1

 ,

CL =
p̄+ g2/(2N)

1 + g2/N
,

LCL = max

 p̄+ g2/(2N)

1 + g2/N
− g

1 + g2/N

√
p̄(1− p̄)
nk

+
g2

4nkN
, 0

 .

As afore-mentioned, for the case of the known p, we can use the known value instead of
p̄ in the above.

For example, one can obtain the control limits of the p chart using the acc function
in the R package rQCC.

> acc(x, n, type="p", pEstimator="Wilson")

The np chart based on the Wilson confidence interval is also obtained by multiplying
n and the control limits of the p chart based on the Wilson confidence interval. This
chart is also appropriate only when samples are balanced. Thus, we have the following
control limits.

UCL = min

{
np̄+ g2/(2m)

1 + g2/(nm)
+

g

1 + g2/(nm)

√
np̄(1− p̄) + g2/(4m), n

}
,

CL =
np̄+ g2/(2m)

1 + g2/(nm)
,

LCL = max

{
np̄+ g2/(2m)

1 + g2/(nm)
− g

1 + g2/(nm)

√
np̄(1− p̄) + g2/(4m), 0

}
.

One can obtain the control limits of the np chart based on the Wilson confidence interval
with type="np" as follows.

> acc(x, n, type="np", pEstimator="Wilson")

3 The u and c charts

The u chart is the control chart for monitoring nonconformities (defects) that occur in
each unit. Let Xi be the number of defects with the ni inspection units. We assume that
the number of defects in a single unit is distributed as the Poisson distribution with the
mean λ. Then Xi are independent and identically distributed according to the Poisson
distribution with the mean λni, such that E(Xi) = niλ and Var(Xi) = niλ.
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Let Uk = Xk/nk. We have E(Uk) = λ and Var(Uk) = λ/nk. To construct the
CL± g · SE control limits, we consider the relation

Uk − E(Uk)√
Var(Uk)

= ±g.

The control limits for the Shewhart-type u chart with the nk inspection units are given
by

λ± g
√

λ

nk
.

It is worth noting that if nk = 1, this chart can be regarded as the c chart.
When λ is unknown, it can be estimated by

λ̄ =

∑m
i=1Xi∑m
i=1 ni

.

Since the control limits are nonnegative, we consider the following control limits

UCL = λ̄+ g

√
λ̄

nk
,

CL = λ̄,

LCL = max

λ̄− g
√

λ̄

nk
, 0

 .

Again, for the case of the known λ, we just use the value of λ instead of λ̄ in the above.
For example, one can obtain the control limits of the u chart using the acc function

as follows.

> acc(x, n, type="u")

The control limits of the c chart are also easily obtained as follows.

> acc(x, type="c")

4 The g and h charts

The geometric distribution can also be used for counting event data. It is widely used
for monitoring the number of conforming cases between the two consecutive appearances
of nonconformities such as defects and infections.

Based on this, Kaminsky et al. [6] proposed g and h charts. The probability mass
function for the geometric distribution with location a is given by

f(y) = P (Y = y) = p(1− p)y−a, (4)
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where y = a, a+ 1, . . . and a is the known minimum possible number of events (usually
a = 0, 1). The mean and variance of Y are given by

µ = E(Y ) =
1− p
p

+ a and σ2 = Var(Y ) =
1− p
p2

.

We construct the control chart for the total number of events (g chart) and the
average number of events (the h chart) per subgroup with CL± g · SE control limits.

The g chart (total number of events) with the sample size nk has the following control
limits which are actually the function of µ and σ2. For more details, see Kaminsky et
al. [6] and Park and Wang [7].

UCL = nkµ+ g
√
nkσ2 = nk

(
1− p
p

+ a

)
+ g

√
nk(1− p)

p2
,

CL = nkµ = nk

(
1− p
p

+ a

)
, (5)

LCL = nkµ− g
√
nkσ2 = nk

(
1− p
p

+ a

)
− g

√
nk(1− p)

p2
.

The smallest possible value of the total number of events is nka. Thus, the LCL cannot
be smaller than nka. If LCL < nka in the above limit, we set up LCL = nka.

The h chart (average number of events) with the sample size nk has the following
control limits.

UCL = µ+ g

√
σ2

nk
=

1− p
p

+ a+ g

√
1− p
nkp2

,

CL = µ =
1− p
p

+ a, (6)

LCL = µ− g

√
σ2

nk
=

1− p
p

+ a− g
√

1− p
nkp2

.

The smallest possible value of the average number of events is a. Thus, we set up
LCL = a if LCL < a in the above limit.

The value of the process parameter p is unknown in general so that we estimate
p. We assume that we obtain m samples and denote the size of each sample by ni
for i = 1, 2, . . . ,m. Suppose that Xij be the number of independent Bernoulli trials
(cases) until the first nonconforming case in the ith sample for i = 1, 2, . . . ,m and j =
1, 2, . . . , ni. Then Xij ’s are independent and identically-distributed geometric random

variables with location shift a and p. We let ¯̄X =
∑m
i=1

∑ni

j=1Xij/N with N =
∑m
i=1 ni.

We can estimate p using the maximum likelihood (ML) and minimum variance unbiased
(MVU) estimators [7] which are given by

p̂ML =
1

¯̄X − a+ 1
and p̂MVU =

1− 1/N
¯̄X − a+ 1− 1/N

,
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respectively. It should be noted that Benneyan [8] proposed

p̂B =
1− 1/N
¯̄X − a+ 1

as the MVU estimator, but Park and Wang [7] showed that p̂B is not a correct MVU
estimator.

The ML estimator has the invariance property. Thus, by substituting p̂ML into (5)
and (6), we can construct the g and h charts based on the ML method as follows.

� g chart

UCL = nk
¯̄X + g

√
nk( ¯̄X − a)( ¯̄X − a+ 1),

CL = nk
¯̄X,

LCL = nk
¯̄X − g

√
nk( ¯̄X − a)( ¯̄X − a+ 1).

� h chart:

UCL = ¯̄X + g

√
( ¯̄X − a)( ¯̄X − a+ 1)

nk
,

CL = ¯̄X,

LCL = ¯̄X − g

√
( ¯̄X − a)( ¯̄X − a+ 1)

nk
.

When we construct the charts based on the MVU estimator, p̂MVU, a care should
be taken because the MVU estimator has no invariance property like the ML estimator.
Park and Wang [7] showed that the MVU estimators of µ and σ2 are given by

µ̂mvu = ¯̄X and σ̂2
mvu =

N

N + 1
( ¯̄X − a)( ¯̄X − a+ 1),

and they construct the g and h charts based on µ̂mvu and σ̂2
mvu as follows.

� g chart:

UCL = nk
¯̄X + g

√
nkN

N + 1
( ¯̄X − a)( ¯̄X − a+ 1),

CL = nk
¯̄X,

LCL = nk
¯̄X − g

√
nkN

N + 1
( ¯̄X − a)( ¯̄X − a+ 1).
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� h chart:

UCL = ¯̄X + g

√
N

N + 1

( ¯̄X − a)( ¯̄X − a+ 1)

nk
,

CL = ¯̄X,

LCL = ¯̄X − g

√
N

N + 1

( ¯̄X − a)( ¯̄X − a+ 1)

nk
.

The control limits of the g and h charts are also easily obtained as follows.

> acc(x, type="g")

> acc(x, type="h")

5 The t chart

The t chart is the control chart for monitoring the stability of a process [9] with the as-
sumption that the time between events can be modeled with exponential or Weibull
distribution. Since the underlying distributions are not symmetric, the use of the
probability-limit control chart is suggested instead of the traditional Shewhart-type
three-sigma limits.

The cumulative distribution function (cdf) of the exponential distribution is given
by

F (x) = 1− e−x/θ.

Then the ML estimator is obtained by θ̂ = X̄ = (1/n)
∑n
i=1Xi with a sample {X1, X2,

. . . , Xn}. Then the LCL, CL and UCL are calculated equating F (x) to α/2, 1/2, and
1− α/2, respectively. Solving these for x, we have the exponential t chart given by

LCL = − log(1− α/2) · θ̂,

CL = − log(1/2) · θ̂,

UCL = − log(α/2) · θ̂,

where α/2 is generally given by α/2 = Φ(−g). Here Φ(·) is the cdf of the standard
normal distribution.

The cdf of the Weibull distribution is given by

F (x) = 1− exp

{
−
(x
θ

)β}
,

where θ > 0 and β > 0 represent the scale and shape parameters, respectively. Let β̂
and θ̂ be the ML estimators of the Weibull parameters. Then, similar to the exponential
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t chart, the Weibull t chart is given by

LCL = {− log(1− α/2)}1/β̂ · θ̂,

CL = {− log(1/2)}1/β̂ · θ̂,

UCL = {− log(α/2)}1/β̂ · θ̂.

The control limits of the exponential and Weibull t charts are obtained as follows.

> acc(x, type="t") # Exponential t chart

> acc(x, type="t", tModel="W") # Weibull t chart
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