A B C D E F G I K L M N O P S T U V Y
A_step | A-step in the EAM algorithm described in KMS19 |
boot.fun | Nonparametric bootstrap approach for the dependent censoring model |
boot.funI | Nonparametric bootstrap approach for the independent censoring model |
boot.nonparTrans | Nonparametric bootstrap approach for a Semiparametric transformation model under dependent censpring |
Bspline.unit.interval | Evaluate the specified B-spline, defined on the unit interval |
Bvprob | Compute bivariate survival probability |
cbMV | Combine bounds based on majority vote. |
check.args.pisurv | Check argument consistency. |
chol2par | Transform Cholesky decomposition to covariance matrix |
chol2par.elem | Transform Cholesky decomposition to covariance matrix parameter element. |
Chronometer | Chronometer object |
clear.plt.wdw | Clear plotting window |
CompC | Compute phi function |
control.arguments | Prepare initial values within the control arguments |
copdist.Archimedean | The distribution function of the Archimedean copula |
cophfunc | The h-function of the copula |
coppar.to.ktau | Convert the copula parameter the Kendall's tau |
cr.lik | Competing risk likelihood function. |
D.hat | Obtain the diagonal matrix of sample variances of moment functions |
dat.sim.reg.comp.risks | Data generation function for competing risks data |
dchol2par | Derivative of transform Cholesky decomposition to covariance matrix. |
dchol2par.elem | Derivative of transform Cholesky decomposition to covariance matrix element. |
dD.hat | Obtain the matrix of partial derivatives of the sample variances. |
Distance | Distance between vectors |
dLambda_AFT_ll | Derivative of link function (AFT model) |
dLambda_Cox_wb | Derivative of link function (Cox model) |
dm.bar | Vector of sample average of each moment function (\bar{m}_n(theta)). |
do.optimization.Mstep | Optimize the expected improvement |
draw.sv.init | Draw initial set of starting values for optimizing the expected improvement. |
DYJtrans | Derivative of the Yeo-Johnson transformation function |
EAM | Main function to run the EAM algorithm |
EAM.converged | Check convergence of the EAM algorithm. |
EI | Expected improvement |
estimate.cf | Estimate the control function |
estimate.cmprsk | Estimate the competing risks model of Rutten, Willems et al. (20XX). |
E_step | E-step in the EAM algorithm as described in KMS19. |
feasible_point_search | Method for finding initial points of the EAM algorithm |
fitDepCens | Fit Dependent Censoring Models |
fitIndepCens | Fit Independent Censoring Models |
G.box | Family of box functions |
G.cd | Family of continuous/discrete instrumental function |
G.cd.mc | Family of discrete/continuous instrumental functions, in the case of many covariates. |
G.hat | Compute the Gn matrix in step 3b of Bei (2024). |
G.spline | Family of spline instrumental functions |
generator.Archimedean | The generator function of the Archimedean copula |
get.anchor.points | Get anchor points on which to base the instrumental functions |
get.cond.moment.evals | Compute the conditional moment evaluations |
get.cvLLn | Compute the critical value of the test statistic. |
get.deriv.mom.func | Matrix of derivatives of conditional moment functions |
get.dmi.tens | Faster implementation to obtain the tensor of the evaluations of the derivatives of the moment functions at each observation. |
get.extra.Estep.points | Get extra evaluation points for E-step |
get.instrumental.function.evals | Evaluate each instrumental function at each of the observations. |
get.mi.mat | Faster implementation of vector of moment functions. |
get.next.point | Obtain next point for feasible point search. |
get.starting.values | Main function for obtaining the starting values of the expected improvement maximization step. |
get.test.statistic | Obtain the test statistic by minimizing the S-function over the feasible region beta(r). |
gridSearch | Grid search algorithm for finding the identified set |
gs.algo.bidir | Rudimentary, bidirectional 1D grid search algorithm. |
gs.binary | Return the next point to evaluate when doing binary search |
gs.interpolation | Return the next point to evaluate when doing interpolation search |
gs.regular | Return the next point to evaluate when doing regular grid search |
insert.row | Insert row into a matrix at a given row index |
IYJtrans | Inverse Yeo-Johnson transformation function |
Kernel | Calculate the kernel function |
ktau.to.coppar | Convert the Kendall's tau into the copula parameter |
Lambda_AFT_ll | Link function (AFT model) |
Lambda_Cox_wb | Link function (Cox model) |
Lambda_inverse_AFT_ll | Inverse of link function (AFT model) |
Lambda_inverse_Cox_wb | Inverse of link function (Cox model) |
lf.delta.beta1 | Loss function to compute Delta(beta). |
lf.ts | 'Loss function' of the test statistic. |
LikCopInd | Loglikehood function under independent censoring |
Likelihood.Parametric | Calculate the likelihood function for the fully parametric joint distribution |
Likelihood.Profile.Kernel | Calculate the profiled likelihood function with kernel smoothing |
Likelihood.Profile.Solve | Solve the profiled likelihood function |
Likelihood.Semiparametric | Calculate the semiparametric version of profiled likelihood function |
LikF.cmprsk | Second step log-likelihood function. |
likF.cmprsk.Cholesky | Wrapper implementing likelihood function using Cholesky factorization. |
LikGamma1 | First step log-likelihood function for Z continuous |
LikGamma2 | First step log-likelihood function for Z binary. |
LikI.bis | Second likelihood function needed to fit the independence model in the second step of the estimation procedure. |
LikI.cmprsk | Second step log-likelihood function under independence assumption. |
LikI.cmprsk.Cholesky | Wrapper implementing likelihood function assuming independence between competing risks and censoring using Cholesky factorization. |
likIFG.cmprsk.Cholesky | Full likelihood (including estimation of control function). |
loglike.clayton.unconstrained | Log-likelihood function for the Clayton copula. |
loglike.frank.unconstrained | Log-likelihood function for the Frank copula. |
loglike.gaussian.unconstrained | Log-likelihood function for the Gaussian copula. |
loglike.gumbel.unconstrained | Log-likelihood function for the Gumbel copula. |
loglike.indep.unconstrained | Log-likelihood function for the independence copula. |
log_transform | Logarithmic transformation function. |
Longfun | Long format |
LongNPT | Change H to long format |
m.bar | Vector of sample average of each moment function (\bar{m}_n(theta)). |
MSpoint | Analogue to KMS_AUX4_MSpoints(...) in MATLAB code of Bei (2024). |
M_step | M-step in the EAM algorithm described in KMS19. |
NonParTrans | Fit a semiparametric transformation model for dependent censoring |
normalize.covariates | Normalize the covariates of a data set to lie in the unit interval by scaling based on the ranges of the covariates. |
normalize.covariates2 | Normalize the covariates of a data set to lie in the unit interval by transforming based on PCA. |
Omega.hat | Obtain the correlation matrix of the moment functions |
optimlikelihood | Fit the dependent censoring models. |
parafam.d | Obtain the value of the density function |
parafam.p | Obtain the value of the distribution function |
parafam.trunc | Obtain the adjustment value of truncation |
ParamCop | Estimation of a parametric dependent censoring model without covariates. |
Parameters.Constraints | Generate constraints of parameters |
pi.surv | Estimate the model of Willems et al. (2024+). |
plot_addpte | Draw points to be evaluated |
plot_addpte.eval | Draw evaluated points. |
plot_base | Draw base plot |
power_transform | Power transformation function. |
PseudoL | Likelihood function under dependent censoring |
S.func | S-function |
ScoreEqn | Score equations of finite parameters |
SearchIndicate | Search function |
set.EAM.hyperparameters | Set default hyperparameters for EAM algorithm |
set.GS.hyperparameters | Set default hyperparameters for grid search algorithm |
set.hyperparameters | Define the hyperparameters used for finding the identified interval |
Sigma.hat | Compute the variance-covariance matrix of the moment functions. |
SolveH | Estimate a nonparametric transformation function |
SolveHt1 | Estimating equation for Ht1 |
SolveL | Cumulative hazard function of survival time under dependent censoring |
SolveLI | Cumulative hazard function of survival time under independent censoring |
SolveScore | Estimate finite parameters based on score equations |
summary.depFit | Summary of 'depCensoringFit' object |
summary.indepFit | Summary of 'indepCensoringFit' object |
SurvDC | Semiparametric Estimation of the Survival Function under Dependent Censoring |
SurvDC.GoF | Calculate the goodness-of-fit test statistic |
SurvFunc.CG | Estimated survival function based on copula-graphic estimator (Archimedean copula only) |
SurvFunc.KM | Estimated survival function based on Kaplan-Meier estimator |
SurvMLE | Maximum likelihood estimator for a given parametric distribution |
SurvMLE.Likelihood | Likelihood for a given parametric distribution |
TCsim | Function to simulate (Y,Delta) from the copula based model for (T,C). |
test.point_Bei | Perform the test of Bei (2024) for a given point |
test.point_Bei_MT | Perform the test of Bei (2024) simultaneously for multiple time points. |
uniformize.data | Standardize data format |
variance.cmprsk | Compute the variance of the estimates. |
YJtrans | Yeo-Johnson transformation function |