
Documentation of the C functions
Weighted BACON algorithms

Tobias Schoch

University of Applied Sciences Northwestern Switzerland FHNW
School of Business, Riggenbachstrasse 16, CH-4600 Olten

tobias.schoch@fhnw.ch

May 21, 2021

Contents

1 Introduction 1

2 Exported functions 1

3 Error handling [wbacon_error.c] 7

4 wBACON [wbacon.c] 8

5 wBACON_reg [wbacon_reg.c] 16

6 Weighted least squares [fitwls.c] 27

7 Weighted quantile [wquantile.c] 29

8 Partial sorting [partial_sort.c] 34

1 Introduction
In this report, we document the C functions underlying the wbacon R package. Only the following
methods are exported:

• wbacon (BACON algorithm for multivariate outlier detection)

• wbacon_reg (BACON algorithm for robust linear regression)

• wquantile (weighted quantile)

All other functions are not exported, hence, they are not callable from R. The methodological details of
the functions are discussed in the document “methods.pdf” (see package folder doc).

For ease of referencing, we use the following abbreviations.

LAPACK: Anderson, E., Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. D. Croz, A.
Greenhaum, S. Hammerling, A. McKenney, and D. Sorensen (1999). LAPACK Users’ Guide, 3rd
ed., Philadelphia: Society for Industrial and Applied Mathematics (SIAM).

1



BLAS: Blackford, L. S., A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel, J. Dongarra, I.
Duff, S. Hammerling, G. Henry, M. Heroux, L. Kaufman, and A. Lumsdaine (2002). An updated
set of basic linear algebra subprograms (BLAS), ACM Transactions on Mathematical Software,
28, 135–151.

OpenMP: OpenMP Architecture Review Board (2018). OpenMP Application Program Interface Version
5.0, URL https://https://www.openmp.org.

2 Exported functions

wbacon Weighted BACON algorithm for multivariate outlier detection

Description

The function implements a weighted variant of Algorithm 3 of Billor et al. (2000). It calls a weighted
variant of Algorithm 2 of Billor et al. (2000) to initialize the subset (see initial_subset).

Usage

void wbacon(double *x, double *w, double *center, double *scatter, double *dist,
int *n, int *p, double *alpha, int *subset, double *cutoff, int *maxiter,
int *verbose, int *version2, int *collect, int *success, int *threads)

Arguments

x data, double array[n, p].
w sampling weights, double array[n].
center center, double array[p].
scatter scatter matrix, double array[p, p].
dist distances, double array[n].
n, p dimensions, [int].
alpha tuning constant, [double], it defines the 1−α quantile of the chi-squared distri-

bution.
subset subset, int array[n]; with elements in the set {0, 1}, where 1 signifies that the

element is in the subset.
cutoff cutoff threshold, [double], i.e. 1− α quantile of the chi-squared distribution.
maxiter maximum number of iterations, [int].

verbose toggle, [int], 1: verbose (i.e., the function prints detailed information to the
console), 0: quiet.

version2 toggle, [int], defines the method to construct the initial subset: 1: “Version 2”
of Billor et al. (2000) is used; 0: “Version 1” is used.

collect size of the initial basic subset, [int].
success indicator, [int], 1: algorithm converged, 0: failure of convergence.
threads requested number of threads (OpenMP), [int].

2

https://https://www.openmp.org


Details

The subset is implemented as an int array[n]. Elements in the subset are coded 1; otherwise 0.
The function makes a copy, w_cpy, of the array w with sampling weights. This copy is used in the
computations (e.g., weightedmean) and is modified such that w_cpy[i] = 0.0 if subset[i] == 0.
See methods.pdf for more details.

Dependencies

internal: initial_location, initial_subset, mahalanobis, cutoffval, and wbacon_error

external: Rmath.h:qchisq

Value

On return, the following slots are overwritten:
center estimated weighted coordinate-wise center
scatter estimated lower triangular matrix of the weighted scatter matrix
dist Mahalanobis distance
subset0 subset of outlier-free observations
cutoff 1− α quantile of the chi-squared distribution
maxiter number of iteration required
success convergence or failure of convergence

References

Billor N., Hadi A.S., Vellemann P.F. (2000). BACON: Blocked Adaptive Computationally efficient
Outlier Nominators. Computational Statistics and Data Analysis 34, pp. 279-298.
Béguin C., Hulliger B. (2008). The BACON-EEM Algorithm for Multivariate Outlier Detection in
Incomplete Survey Data. Survey Methodology 34, pp. 91-103.

wbacon_reg Weighted BACON algorithm for robust linear regression

Description

The function implements a weighted variant of the Algorithms 4 and 5 of Billor et al. (2000).

Usage

void wbacon_reg(double *x, double *y, double *w, double *resid, double *beta,
int *subset0, double *dist, int *n, int *p, int *m, int *verbose,
int *success, int *collect, double *alpha, int *maxiter, int *original,
int *threads)

3



Arguments

x design matrix, double array[n, p].
y response, double array[n].
w sampling weights, double array[n].
resid reiduals, double array[n].
subset0 subset, int array[n]; with elements in the set {0, 1}, where 1 signifies that the

element is in the subset.
dist distances/ tis, double array[n].
n, p dimensions, [int].
m size of subset, [int].
verbose toggle, [int], 1: verbose (i.e., the function prints detailed information to the

console), 0: quiet.
success 1: successful termination; 0: error, did not converge, [int].
collect size of the initial basic subset, [int].
alpha cutoff threshold, [double], i.e. 1− α quantile of the Student t-distribution.
maxiter maximum number of iterations, [int].

original 1: the subset of the m = collect * p smallest observations (small w.r.t. to the
Mahalanobis distances) is taken from the subset generated by Algorithm 3 as the
basic subset for regression [this is the original method of Billor et al. (2000)];
otherwise (i.e., when 0) the subset that results from Algorithm 3 of Billor et al.
(2000) is taken to be the basic subset for regression, [int].

threads requested number of threads (OpenMP), [int].

Details

The regression is computed in two steps. First, we call the weighted BACON algorithm for mul-
tivariate outlier detection (Algorithm 3, see wbacon) on the design matrix x (Note: the regression
intercept, if there is one, must be dropped). As a result, we obtain subset and m, which are then
used as an input to wbacon_reg.
The function wbacon_reg calls initial_reg to initialize the regression. Then, it calls algorithm_4
and algorithm_5.
See methods.pdf for more details.

Dependencies

initial_reg, algorithm_4, and algorithm_5

Value

On return, the following slots are overwritten:
beta regression coefficients
resid residuals
dist distances/ tis

4



subset0 subset of outlier-free observations
maxiter number of iteration required
success convergence or failure of convergence
x is overwritten with the QR factorization as returned by LAPACK: dgels, respec-

tively, LAPACK: dgeqrf

References

Billor N., Hadi A.S., Vellemann P.F. (2000). BACON: Blocked Adaptive Computationally efficient
Outlier Nominators. Computational Statistics and Data Analysis 34, pp. 279-298.

wquantile Weighted quantile

Description

Weighted quantile.

Usage

void wquantile(double *array, double *weights, int *n, double *prob,
double *result)

Arguments

array data, double array[n].
weights sampling weights, double array[n].
n dimension, int.
prob probability that defines the quantile, double, such that 0 ≤prob≤ 1.
result quantile, double.

Details

• The function is based on a weighted version of the Select (FIND, quickselect) algorithm of
C.A.R. Hoare with the Bentley and McIlroy (1993) 3-way partitioning scheme. For very small
arrays, we use insertion sort.

• For equal weighting, i.e. when all elements in weights are equal, wquantile computes quantiles
of type 2 in Hyndman and Fan (1996).

• (Weighted) Select (and Quicksort) is efficient for large arrays. But its overhead can be severe
for small arrays; hence, we use insertion sort for small arrays; cf. Bentley and McIlroy (1993).
The size threshold below which insertion sort is used can be specified by setting the macro
_n_quickselect at compile time; see Sect. 7.

See methods.pdf for more details.

Dependency

wquantile_noalloc

5



Value

On return, result is overwritten with the weighted quantile.

References

Bentley, J.L. and D.M. McIlroy (1993). Engineering a Sort Function, Software - Practice and
Experience 23, pp. 1249-1265.
Hyndman, R.J. and Y. Fan (1996). Sample Quantiles in Statistical Packages, The American Statis-
tician 50, pp. 361-365.

6



3 Error handling [wbacon_error.c]
Error handling refers to the functions that operate on matrices, and which may fail (e.g., because of
rank deficiency). These functions return a value of typedef enum wbacon_error_type. The function
wbacon_error can be called to return a human readable error message.

wbacon_error_type Error type [typedef enum]

WBACON_ERROR_OK
no error.

WBACON_ERROR_RANK_DEFICIENT
matrix is rank deficient.

WBACON_ERROR_NOT_POSITIVE_DEFINITE
matrix is not positive definite.

WBACON_ERROR_TRIANG_MAT_SINGULAR
triangular matrix is singular.

WBACON_ERROR_CONVERGENCE_FAILURE
the algorithm did not converge

[WBACON_ERROR_COUNT]
error count. This is not an actual error; it is used for internal purposes.

wbacon_error Human readable error string

Description

Returns a human readable error string.

Usage

const char* wbacon_error(wbacon_error_type err)

Arguments

err error of typedef enum [wbacon_error_type].

Value

Returns a string with a human readable error message.

7



4 wBACON [wbacon.c]
To offer functions with a clean interface, most of the functions use the typedef struct wbdata and
workarray.

wbdata Data [typedef struct]

n dimension.

p dimension.

x pointer to data, double array[n,p].

w pointer to weight, double array[n].

dist pointer to distance, double array[n].

workarray Work arrays [typedef struct]

iarray pointer to work array, int array[n].

work_n pointer to work array, double array[n].

work_np pointer to work array, double array[n, p].

work_pp pointer to work array, double array[pp].

work_2n pointer to work array, double array[2n].

8



Internal functions

initial_location Internal function

Description

Computes the initial location: either version “v1” or “v2” or Billor et al. (2000).

Usage

static wbacon_error_type initial_location(wbdata *dat, workarray *work,
double* restrict select_weight, double* restrict center,
double* restrict scatter, int* version2)

Arguments

dat data, typedef struct wbdata.
work work array, typedef struct workarray.
select_weight weight that indicates membership of an observation in the sample (=1.0), other-

wise 0.0, array[n].
center center, double array[p].
scatter scatter matrix, double array[p, p].
version2 toggle, [int], defines the method to construct the initial subset: 1: “Version 2”

of Billor et al. (2000) is used; 0: “Version 1” is used.

Dependency

wquantile_noalloc, euclidean_norm2, and mahalanobis

Value

The function returns a wbacon_error_type: the return value is either WBACON_ERROR_OK (i.e., no
error) or the error handed over by mahalanobis.
See methods.pdf for the details.
On return, the following slots are overwritten:
center

scatter

9



initial_subset Internal function

Description

Computes the initial subset. This is a weighted variant of Algorithm 2 of Billor et al. (2000).

Usage

static wbacon_error_type initial_subset(wbdata *dat, workarray *work,
double* restrict select_weight, double* restrict center,
double* restrict scatter, int* restrict subset,
int* restrict subsetsize, int *verbose, int *collect)

Arguments

dat data, typedef struct wbdata.
work work array, typedef struct workarray.
select_weight weight that indicates membership of an observation in the sample (=1.0), other-

wise 0.0, array[n].
center center, double array[p].
scatter scatter matrix, double array[p, p].
subset subset, int array[n]; with elements in the set {0, 1}, where 1 signifies that the

element is in the subset.
subsetsize size of subset, [int].
verbose toggle, [int], 1: verbose (i.e., the function prints detailed information to the

console), 0: quiet.
collect size of the initial basic subset, [int].

Dependency

scatter_w

Value

The function returns a wbacon_error_type: the return value is either WBACON_ERROR_OK (i.e., no
error) or the error handed over by check_matrix_fullrank.
On return, the following slots are overwritten:
dat->w elements in the initial subset have wi = 1, else wi = 0
subset subset
subsetsize size of the subset

10



mahalanobis Internal function

Description

Computes the Mahalanobis distance of the xi’s; see methods.pdf for the details.

Usage

static inline wbacon_error_type mahalanobis(wbdata *dat, workarray *work,
double* restrict select_weight, double* restrict center,
double* restrict scatter)

Arguments

dat data, typedef struct wbdata.
work work array, typedef struct workarray.
select_weight weight that indicates membership of an observation in the sample (=1.0), other-

wise 0.0, array[n].
center center, double array[p].
scatter scatter matrix, double array[p, p].

Details

The function’s loop over the columns of the data matrix is parallelized using the OpenMP prepro-
cessor directive

#pragma omp parallel for if(n > OMP_MIN_SIZE)

where OMP_MIN_SIZE is of size 100 000 , and n and is the number of rows. The inner loop over the
n rows is equipped with the directive #pragma omp simd to tell the compiler that we demand SIMD
vectorization.

Dependencies

internal: mean_scatter_w

external: LAPACK:dtrsm and LAPACK:dpotrf

Value

The function returns a wbacon_error_type: the return value is either WBACON_ERROR_OK (i.e., no
error) or WBACON_ERROR_RANK_DEFICIENT.
On return, dat->dist is overwritten with the Mahalanobis distance.

11



scatter_w Internal function

Description

Computes the weighted scatter matrix.

Usage

static inline void scatter_w(wbdata *dat, double* restrict work,
double* restrict select_weight, double* restrict center,
double* restrict scatter)

Arguments

dat data, typedef struct wbdata.
work_np work array, double array[n, p].
select_weight weight that indicates membership of an observation in the sample (=1.0), other-

wise 0.0, array[n].
center center, double array[p].
scatter scatter matrix, double array[p, p].

Details

The weighted scatter matrix is computed without (re-) computing the center.
The function’s loop over the columns of the data matrix is parallelized using the OpenMP prepro-
cessor directive

#pragma omp parallel for if(n > OMP_MIN_SIZE)

where OMP_MIN_SIZE is of size 100 000 and n is the number of rows. The inner loop over the n
rows is equipped with the directive #pragma omp simd to tell the compiler that we demand SIMD
vectorization.

Dependency

BLAS:dsyrk

Value

On return, scatter is overwritten with the lower triangular matrix of the weighted scatter matrix.

12



mean_scatter_w Internal function

Description

Computes the weighted scatter matrix.

Usage

static inline void mean_scatter_w(wbdata *dat, double* restrict select_weight,
double* restrict work_n, double* restrict work_np, double* restrict center,
double* restrict scatter)

Arguments

dat data, typedef struct wbdata.
select_weight weight that indicates membership of an observation in the sample (=1.0), other-

wise 0.0, array[n].
work_n work array, double array[n].
work_np work array, double array[n, p].
center center, double array[p].
scatter scatter matrix, double array[p, p].

Details

The function’s loop over the columns of the data matrix is parallelized using the OpenMP prepro-
cessor directive

#pragma omp parallel for if(n > OMP_MIN_SIZE)

where OMP_MIN_SIZE is of size 100 000 and n is the number of rows. The inner loop over the n
rows is equipped with the directive #pragma omp simd to tell the compiler that we demand SIMD
vectorization.

Dependency

BLAS:dsyrk

Value

On return, scatter and mean are overwritten with, respectively, the lower triangular matrix of the
weighted scatter matrix and the weighted coordinate-wise mean.

13



euclidean_norm2 Internal function

Description

Computes the squared Euclidean norm ‖x− c‖2
2, where c denotes the center.

Usage

static inline void euclidean_norm2(wbdata *dat, double* restrict work_np,
double* restrict center)

Arguments

dat data, typedef struct wbdata.
work_np work array, double array[n, p].
center center, double array[p].

Details

The implementation follows closely S. Hammarling’s dnrm2 function in LAPACK, which uses a
onepass algorithm. The algorithm incorporates some form of scaling to prevent underflows. Higham
(2002, p. 507 and 571) shows that the return value of the function can only overflow if ‖x‖2 exceeds
the largest storable double value. See also Hanson and Hopkins (2017).

Value

On return, dat->dist is overwritten with the Euclidean norm.

References

Hanson, R.J., and T. Hopkins (2017). Remark on Algorithm 539: A Modern Fortran Reference
Implementation for Carefully Computing the Euclidean Norm, ACM Transactions on Mathematical
Software 44, Article 24.
Higham, N.J. (2002). Accuracy and Stability of Numerical Algorithms, 2nd ed., Philadelphia: So-
ciety for Industrial and Applied Mathematics.

check_matrix_fullrank
Internal function

Description

Check whether the array/ matrix x has full rank.

Usage

static wbacon_error_type check_matrix_fullrank(double* restrict x, int p)

14



Arguments

x data, double array[p, p].
p dimension, [int].

Details

See methods.pdf for the details.

Dependency

LAPACK:dpotrf

Value

The function returns a instance of wbacon_error_type:
• WBACON_ERROR_OK (i.e., no error),
• WBACON_ERROR_NOT_POSITIVE_DEFINITE or
• WBACON_ERROR_RANK_DEFICIENT.

cutoffval Internal function

Description

Computes the correction factor used in the determination of the chi-squared quantile criterion; see
methods.pdf for the details.

Usage

static inline double cutoffval(int n, int k, int p)

Arguments

k subset size, [int].
n, p dimensions, [int].

Value

Returns the correction factor.

15



5 wBACON_reg [wbacon_reg.c]
To offer functions with a clean interface, most of the functions use the typedef structs regdata (see
regdata.h), estimate, and workarray.

wbdata Data [typedef struct]

n dimension.

p dimension.

x pointer to the design matrix, double array[n,p].

wx pointer to a copy of the design matrix, double array[n,p].

y pointer to the response, double array[n].

wy pointer to a copy of the response, double array[n].

w pointer to the sampling weights, double array[n].

w_sqrt pointer to the square root of sampling weights, double array[n].

Note. All slots of the instances of the typedef struct regdata are considered immutable, with one
exception: wx and wy will be modified.

estimate Estimates [typedef struct]

sigma regression scale, double.

weight pointer to the weights, double array[n].

resid pointer to the residuals, double array[n].

beta pointer to the regression coefficient, double array[p].

dist pointer to the distances, double array[n].

L pointer to the Cholesky factor, double array[p,p].

xty pointer to XT y, double array[p].

Note. The slots of the typedef struct estimate reflect the data and parameters of the model fit at the
current stage. The instance est of estimate is updated iteratively.

16



workarray Work arrays [typedef struct]

lwork determines the size of the array dgles_work, [int];

iarray pointer to work array, int array[n].

work_n pointer to work array, double array[n].

work_np pointer to work array, double array[np].

work_pp pointer to work array, double array[pp].

degels_work pointer to double array[lwork]; this array is required by LAPACK:dgels.

Note. The slots of the typedef struct workarray are not (and should not be) used to reference data
over different function calls.

Internal functions

initial_reg Internal function

Description

Initializes the least squares estimate.

Usage

static wbacon_error_type initial_reg(regdata *dat, workarray *work,
estimate *est, int* restrict subset, int *m, int *verbose)

Arguments

dat regression data, typedef struct regdata.
work work array, typedef struct workarray.
est estimates, typedef struct estimate.
subset subset, int array[n]; with elements in the set {0, 1}, where 1 signifies that the

element is in the subset.
m size of the subset, [int].
verbose toggle, [int], 1: verbose (i.e., the function prints detailed information to the

console), 0: quiet.

17



Details

The function’s loop over the columns of the data matrix is parallelized using the OpenMP prepro-
cessor directive

#pragma omp parallel for if(n > REG_OMP_MIN_SIZE)

where REG_OMP_MIN_SIZE is of size 1 000 000 and n is the number of rows and columns.
See methods.pdf for more details.

Dependencies

fitwls, psort_array, and compute_ti

Value

The function returns a wbacon_error_type: the return value is either WBACON_ERROR_OK (i.e., no
error) or WBACON_ERROR_RANK_DEFICIENT.
On return, the following slots are overwritten:
est->sigma regression scale
est->resid residuals
est->beta regression coefficients
est->dist distances/ ti’s
subset initial subset
m size of subset1

algorithm_4 Internal function

Description

Computes a weighted variant of Algorithm 4 of Billor et al. (2000).

Usage

static wbacon_error_type algorithm_4(regdata *dat, workarray *work,
estimate *est, int* restrict subset0, int* restrict subset1, int *m,
int *verbose, int *collect)

Arguments

dat regression data, typedef struct regdata.
work work array, typedef struct workarray.
est estimates, typedef struct estimate.
subset0 subset, int array[n]; with elements in the set {0, 1}, where 1 signifies that the

element is in the subset.

18



subset1 subset, int array[n]; with elements in the set {0, 1}, where 1 signifies that the
element is in the subset.

m size of the subset, [int].
verbose toggle, [int], 1: verbose (i.e., the function prints detailed information to the

console), 0: quiet.
collect size of the initial basic subset, [int].

Details

See methods.pdf for more details.

Dependencies

internal: update_chol_xty, cholesky_reg, compute_ti, and select_subset

external: BLAS:dgemv

Value

The function returns a wbacon_error_type either WBACON_ERROR_OK (i.e., no error) or the error
handed over by

• update_chol_xty or
• compute_ti.

On return, the following slots are overwritten:
est->sigma regression scale
est->resid residuals
est->beta regression coefficients
est->dist distances/ ti’s
subset1 final subset of Algorithm 4
m size of subset1

algorithm_5 Internal function

Description

Computes a weighted variant of Algorithm 5 of Billor et al. (2000).

Usage

static wbacon_error_type algorithm_5(regdata *dat, workarray *work,
estimate *est, int* restrict subset0, int* restrict subset1,
double *alpha, int *m, int *maxiter, int *verbose)

19



Arguments

dat regression data, typedef struct regdata.
work work array, typedef struct workarray.
est estimates, typedef struct estimate.
subset0 subset, int array[n]; with elements in the set {0, 1}, where 1 signifies that the

element is in the subset.
subset1 subset, int array[n]; with elements in the set {0, 1}, where 1 signifies that the

element is in the subset.
alpha defines the 1− α quantile of the Student t-distribution.
m size of the subset, [int].
maxiter maximum number of iterations, [int].

verbose toggle, [int], 1: verbose (i.e., the function prints detailed information to the
console), 0: quiet.

Details

See methods.pdf for more details.

Dependencies

internal: fitwls and compute_ti

external: Rmath.h:qt

Value

The function returns a wbacon_error_type: the return value is either the error handed over by
compute_ti or

• WBACON_ERROR_OK (i.e., no error) or
• WBACON_ERROR_CONVERGENCE_FAILURE if it does not converge in maxiter iterations.

On return, the following slots are overwritten:
est->sigma regression scale
est->resid residuals
est->beta regression coefficients
est->dist distances/ ti’s
subset1 final subset of outlier-free data
m size of subset1

maxiter number of iterations required

20



select_subset Internal function

Description

Selects the smallest 1..m observations in x into the subset.

Usage

static void select_subset(double* restrict x, int* restrict iarray,
int* restrict subset, int *m, int *n)

Arguments

x data, double array[n].
iarray work array, int array[n].

subset subset, int array[n]; with elements in the set {0, 1}, where 1 signifies that the
element is in the subset.

m size of the subset, [int].

Details

The function calls psort_array to (partially) sort the elements of x in ascending order. Then, the
smallest m observations are selected into subset.

Value

On return, subset is overwritten with the generated subset.

compute_ti Internal function

Description

Compute the ti’s (tis) of Billor et al. (2000, p. 288).

Usage

static wbacon_error_type compute_ti(regdata *dat, workarray *work,
estimate *est, int* restrict subset, int *m, double* restrict tis)

21



Arguments

dat regression data, typedef struct regdata.
work work array, typedef struct workarray.
est estimates, typedef struct estimate.
subset subset, int array[n]; with elements in the set {0, 1}, where 1 signifies that the

element is in the subset.
m size of the subset, [int].
tis double array[n].

Details

The function calls hat_matrix to compute the diagonal elements of the “hat” matrix and computes
the regression scale. Then, it computes the ti’s.

Dependency

hat_matrix

Value

The function’s loop over the columns of the hat matrix is parallelized using the OpenMP prepro-
cessor directive

#pragma omp parallel for if(n > REG_OMP_MIN_SIZE)

where REG_OMP_MIN_SIZE is of size 1 000 000 and n is the number of rows and columns.
The function returns a wbacon_error_type: the return value is either WBACON_ERROR_OK (i.e., no
error) or the error handed over by hat_matrix.
On return, tis is overwritten with the computed ti’s.

cholesky_reg Internal function

Description

Compute the least squares estimate using the Cholesky factor L and the matrix XT y.

Usage

static inline void cholesky_reg(double *L, double *x, double *xty,
double *beta, int *n, int *p)

22



Arguments

L Cholesky factor, double array[p,p].
x data, double array[n].
xty XT y double array[p].
beta regression coefficients double array[p].
n dimension.
p dimension.

Value

On return, beta is overwritten with the updated least squares estimate.

hat_matrix Internal function

Description

Computes the diagonal elements of the extended “hat” matrix.

Usage

static inline wbacon_error_type hat_matrix(regdata *dat, workarray *work,
double* restrict L, double* restrict hat)

Arguments

dat regression data, typedef struct regdata.
work work array, typedef struct workarray.
L Cholesky factor, double array[p,p].
hat hat matrx, double array[n].

Details

The diagonal elements of the “hat” matrix are computed for the observations in the subset. For
the elements not in the subset, an “extended hat” matrix is computed.

Value

The function returns a wbacon_error_type: the return value is either WBACON_ERROR_OK (i.e., no
error) or WBACON_ERROR_TRIANG_MAT_SINGULAR when the triangular matrix is singular.
On return, hat is overwritten with the diagonal elements of the “hat” matrix.

23



update_chol_xty Internal function

Description

The function up- and downdates the Cholesky factor L and the matrix product by comparing the
two sets subset0 and subset1.

Usage

static wbacon_error_type update_chol_xty(regdata *dat, workarray *work,
estimate *est, int* restrict subset0, int* restrict subset1, int *verbose)

Arguments

dat regression data, typedef struct regdata.
work work array, typedef struct workarray.
est estimates, typedef struct estimate.
subset0 subset, int array[n]; with elements in the set {0, 1}, where 1 signifies that the

element is in the subset.
subset1 subset, int array[n]; with elements in the set {0, 1}, where 1 signifies that the

element is in the subset.
m size of the subset1, [int].
verbose toggle, [int], 1: verbose (i.e., the function prints detailed information to the

console), 0: quiet.

Details

The function update_chol_xty compares the sets subset0 and subset1. For all elements that are
in subset0 but not in subset1, it calls chol_downdate. For all elements that are not in subset0
but in subset1, it calls chol_update.

Value

The function returns a wbacon_error_type: the return value is either WBACON_ERROR_OK (i.e., no
error) or the error handed over by chol_downdate.
On return, L and xty are overwritten with their updated values.

24



chol_update Internal function

Description

Rank-one update of the Cholesky factor.

Usage

static inline void chol_update(double* restrict L, double* restrict u, int p)

Arguments

L Cholesky factor, double array[p,p].
u rank-one update for L, double array[p].
p dimension.

Details

This function computes a one rank-one update of the Cholesky factor.

Value

On return, L is overwritten by its updated value.

chol_downdate Internal function

Description

Rank-one downdate of the Cholesky factor.

Usage

static inline wbacon_error_type chol_downdate(double* restrict L,
double* restrict u, int p)

Arguments

L Cholesky factor, double array[p,p].
u rank-one downdate for L, double array[p].
p dimension.

Details

This function computes a one rank-one downdate of the Cholesky factor. The attempt to downdate
may break down if the Cholesky factor becomes/is not positive definite. In this case, an error is
returned.

25



Value

The function returns a wbacon_error_type: the return value is either WBACON_ERROR_OK (i.e., no
error) or WBACON_ERROR_RANK_DEFICIENT.
On return, L is overwritten by its downdated value.

26



6 Weighted least squares [fitwls.c]

fitwls Weighted least squares

Description

Returns the least squares estimate, the matrices Q and R of the QR factorization, the estimate of
regression scale, and the residuals of a weighted linear regression.

Usage

int fitwls(regdata *dat, estimate* est, int* restrict subset,
double* restrict work_dgels, int lwork)

Arguments

dat regression data, typedef struct regdata.
est estimates, typedef struct estimate.
subset subset, int array[n]; with elements in the set {0, 1}, where 1 signifies that the

element is in the subset.
work_dgels work array, double array[lwork].
lwork dimension of array work, [int]; if lwork<1, the function determines and returns

the optimal

Details

The regression coefficients are computed with the LAPACK:dgels subroutine using a QR factoriza-
tion of the weighted design matrix.
The function’s loop over the columns of the hat matrix is parallelized using the OpenMP prepro-
cessor directive

#pragma omp parallel for if(n > FITLS_OMP_MIN_SIZE)

where FITWLS_OMP_MIN_SIZE is of size 1 000 000 and n is the number of rows.

Dependencies

LAPACK:dgels and BLAS:dgemv

Value

The function fitwls returns its status info; if successful, info=0; otherwise the computation failed.
On return, the following slots of struct estimate est are overwritten:
beta regression coefficients
sigma regression scale
resid residuals

27



and, the following slots of struct regdata dat are overwritten:
wx the QR factorization as returned by the subroutine LAPACK:dgeqrf

28



7 Weighted quantile [wquantile.c]
The following functions are documented in this section:

• wquantile_noalloc

• wselect0

• some internal functions

The source file wquantile.c defines two macros:
_n_quickselect

threshold to switch from insertion sort to a weighted variant of the Select (FIND,
quickselect) algorithm, default: 40 (i.e., for samples smaller than 40, insertion sort is
used).

_n_ninther threshold for choosing the pivotal element, default: 50; for samples smaller than 50,
the pivot is chosen by the median-of-three; for larger samples, Tukey’s ninther is used.

(Weighted) quicksort/ Select(FIND, quickselect) method is efficient for large arrays. But its overhead
can be severe for small arrays; hence, we use insertion sort for small arrays; cf. Bentley and McIlroy
(1993). We have determined the numerical values by a series of benchmark tests with Google benchmark
on an ordinary laptop computer (Intel i7 8th generation).

wquantile_noalloc Weighted quantile without memory allocation

Description

The same as wquantile but without memory allocation.

Usage

void wquantile_noalloc(double *array, double *weights, double *work, int *n,
double *prob, double *result)

Arguments

array data, double array[n].
weights sampling weights, double array[n].
workwork work array, double array[2*n].
n dimension, [int].
prob probability that defines the quantile, such that 0 ≤prob≤ 1, [double].
result quantile, [double].

Details

See wquantile.

29

https://github.com/google/benchmark


Dependencies

wselect0 and wquant0

Value

On return, result is overwritten with the weighted quantile.

wselect0 Selection of the k-th largest element (k-th order statistic)

Description

Returns the k-th largest element (k-th order statistic); sampling weights allowed.

Usage

void wselect0(double *array, double *weights, int lo, int hi, int k)

Arguments

array data, double array[lo..hi].
weights sampling weights, double array[n].
lo lower boundary of arrays, [int].
hi upper boundary of arrays, [int].
k k-th largest element, such that lo≤ k≤hi, [int].

Details

See wquantile.

Dependency

partition_3way

Value

On return, element array[k] is in its final sorted position; weights is sorted along with array.

30



insertionselect Internal function

Description

Computes the weighted quantile by sorting all elements in array in ascending order (using insertion
sort). For small arrays, this can be considerably faster than quicksort.

Usage

double insertionselect(double *array, double *weights, int lo, int hi,
double prob)

Arguments

array data, double array[n].
weights sampling weights, double array[n].
lo lower boundary of arrays, [int].
hi upper boundary of arrays, [int].
prob probability that defines the quantile, double, such that 0 ≤prob≤ 1.

Dependency

swap2

Value

On return, element array[k] is in its final sorted position; weights is sorted along with array.

31



Internal functions

wquant0 Internal function

Description

Workhorse function that computes the weighted quantile recursively; see wquantile.

Usage

void wquant0(double *array, double *weights, double sum_w, int lo, int hi,
double prob, double *result)

Dependencies

insertionselect and partition_3way

partition_3way Internal function

Description

3-way partitioning scheme of Bentley and McIlroy’s (1993) with weights.

Usage

void partition_3way(double *array, double *weights, int lo, int hi, int *i,
int *j)

Dependency

swap2

References

Bentley, J.L. and D.M. McIlroy (1993). Engineering a Sort Function, Software - Practice and
Experience 23, pp. 1249-1265.

32



choose_pivot Internal function

Description

Choose pivotal element: for arrays of size < _n_ninther, the median of three is taken as pivotal
element, otherwise Tukey’s ninther is used; see e.g. Bentley and McIlroy (1993).

Usage

static inline int choose_pivot(double *array, int lo, int hi)

Dependency

med3

References

Bentley, J.L. and D.M. McIlroy (1993). Engineering a Sort Function, Software - Practice and
Experience 23, pp. 1249-1265.

swap2 Internal function

Description

Two elements in array are swapped (and the corresponding elements in array weights are also
swapped).

Usage

static inline void swap2(double *array, double *weights, int i, int j)

med3 Internal function

Description

Median-of-three (but without swaps); see e.g. Sedgewick (1997, Chap. 7.5).

Usage

static inline double med3(double *array, int i, int j, int k)

References

Sedgewick, R. (1997). Algorithms in C, Parts 1-4, Fundamentals, Data Structures, Sorting, and
Searching, Addison-Wesley Longman Publishing Co., Inc., 3rd ed.

33



8 Partial sorting [partial_sort.c]

psort_array Partially sort an array with index

Description

Partially sorts array x in ascending order; the accompanying int array (called index) is sorted
along with the array.

Usage

void psort_array(double *x, int *index, int n, int k)

Arguments

x data, double array[n].
index index, int array[n]; the array will be overwritten.
n dimension, [int].
k value that determines the upper array boundary of x[0..k], where k ≤ n, [int].

Details

This function is a wrapper for the function partial_sort_with_index.
The function takes care of generating the array index. The elements of this array will set up to be
0..(n -1).

Dependency

partial_sort_with_index

Value

On return, the array x[0..k] is partially sorted in ascending order; the array index[0..k] is sorted
along with x[0..k].

Internal functions
Most of the internal functions which are called from psort_array are identical with the internal func-
tions of wselect0. Therefore, we do not document separately.

34



partial_sort_with_index
Internal function

Description

Partially sorts a array x in ascending order; the accompanying int array (called index) is sorted
along with the array.

Usage

void partial_sort_with_index(double *x, int *index, int *lo, int *hi, int *k)

Arguments

x data, double array[lo..hi].
index index, int array[lo..hi]; the array will be overwritten.
lo, hi indices, [int], usually lo = 0 and hi = n -1.
k an [int] in lo..hi; determines the k-th largest element up to which x is to be

sorted.

Details

The array index must be generated by the caller.

Value

On return, the elements lo..k in the array x[lo..hi] are partially sorted in ascending order; the
array index[lo..k] is sorted along with x[lo..k].

35


	Contents
	Introduction
	Exported functions
	wbacon
	wbacon_reg
	wquantile
	Error handling [wbacon_error.c]
	wbacon_error_type
	wbacon_error
	wBACON [wbacon.c]
	wbdata
	workarray
	initial_location
	initial_subset
	mahalanobis
	scatter_w
	mean_scatter_w
	euclidean_norm2
	check_matrix_fullrank
	cutoffval
	wBACON_reg [wbacon_reg.c]
	wbdata
	estimate
	workarray
	initial_reg
	algorithm_4
	algorithm_5
	select_subset
	compute_ti
	cholesky_reg
	hat_matrix
	update_chol_xty
	chol_update
	chol_downdate
	Weighted least squares [fitwls.c]
	fitwls
	Weighted quantile [wquantile.c]
	wquantile_noalloc
	wselect0
	insertionselect
	wquant0
	partition_3way
	choose_pivot
	swap2
	med3
	Partial sorting [partial_sort.c]
	psort_array
	partial_sort_with_index


