Fast Machine Learning Model Training and Evaluation


[Up] [Top]

Documentation for package ‘fastml’ version 0.2.0

Help Pages

define_bagging_spec Define Bagging Model Specification
define_bayes_glm_spec Define Bayesian GLM Model Specification
define_c5_0_spec Define C5.0 Model Specification
define_decision_tree_spec Define Decision Tree Model Specification
define_deep_learning_spec Define Deep Learning Model Specification (keras)
define_elastic_net_spec Define Elastic Net Model Specification
define_knn_spec Define K-Nearest Neighbors Model Specification
define_lasso_regression_spec Define Lasso Regression Model Specification
define_lda_spec Define Linear Discriminant Analysis Model Specification
define_lightgbm_spec Define LightGBM Model Specification
define_linear_regression_spec Define Linear Regression Model Specification
define_logistic_regression_spec Define Logistic Regression Model Specification
define_naive_bayes_spec Define Naive Bayes Model Specification
define_neural_network_spec Define Neural Network Model Specification (nnet)
define_penalized_logistic_regression_spec Define Penalized Logistic Regression Model Specification
define_pls_spec Define Partial Least Squares Model Specification
define_qda_spec Define Quadratic Discriminant Analysis Model Specification
define_random_forest_spec Define Random Forest Model Specification
define_ranger_spec Define Ranger Model Specification
define_ridge_regression_spec Define Ridge Regression Model Specification
define_svm_linear_spec Define SVM Linear Model Specification
define_svm_radial_spec Define SVM Radial Model Specification
define_xgboost_spec Define XGBoost Model Specification
evaluate_models Evaluate Models Function
fastml Fast Machine Learning Function
load_model Load Model Function
plot.fastml_model Plot Function for fastml_model
predict.fastml_model Predict Function for fastml_model
save_model Save Model Function
summary.fastml_model Summary Function for fastml_model
train_models Train Specified Machine Learning Algorithms on the Training Data