A B C D E F G H I J L M N O P R S T V
abcd_anxiety | Mock ABCD anxiety data |
abcd_colour | Mock ABCD "colour" data |
abcd_cort_sa | Mock ABCD cortical surface area data |
abcd_cort_t | Mock ABCD cortical thickness data |
abcd_depress | Mock ABCD depression data |
abcd_h_income | Mock ABCD income data |
abcd_income | Mock ABCD income data |
abcd_pubertal | Mock ABCD pubertal status data |
abcd_subc_v | Mock ABCD subcortical volumes data |
add_columns | Add columns to a dataframe |
add_settings_matrix_rows | Add settings matrix rows |
adjusted_rand_index_heatmap | Heatmap of pairwise adjusted rand indices between solutions |
age_df | Mock age data |
alluvial_cluster_plot | Alluvial plot of patients across cluster counts and important features |
anxiety | Mock ABCD anxiety data |
arrange_dl | Given a data_list object, sort data elements by subjectkey |
assemble_data | Collapse a dataframe and/or a data_list into a single dataframe |
assoc_pval_heatmap | Heatmap of pairwise associations between features |
auto_plot | Automatically plot features across clusters |
bar_plot | Bar plot separating a feature by cluster |
batch_nmi | Calculate feature NMIs for a data_list and a derived solutions_matrix |
batch_row_closure | Generate closure function to run batch_snf in an apply-friendly format |
batch_snf | Run variations of SNF. |
batch_snf_subsamples | Run SNF clustering pipeline on a list of subsampled data lists. |
calculate_coclustering | Calculate coclustering data. |
calculate_db_indices | Calculate Davies-Bouldin indices |
calculate_dunn_indices | Calculate Dunn indices |
calculate_silhouettes | Calculate silhouette scores |
calc_aris | Meta-cluster calculations |
calc_assoc_pval | Calculate p-values based on feature vectors and their types |
calc_assoc_pval_matrix | Calculate p-values for all pairwise associations of features in a data_list |
cancer_diagnosis_df | Mock diagnosis data |
cell_significance_fn | Place significance stars on ComplexHeatmap cells. |
char_to_fac | Convert character-type columns of a dataframe to factor-type |
check_dataless_annotations | Helper function to stop annotation building when no data was provided |
check_hm_dependencies | Check for ComplexHeatmap and circlize dependencies |
check_similarity_matrices | Check validity of similarity matrices |
chi_squared_pval | Chi-squared test p-value (generic) |
coclustering_coverage_check | Coclustering coverage check |
cocluster_density | Density plot coclustering stability across subsampled data. |
cocluster_heatmap | Heatmap of observation co-clustering across resampled data. |
collapse_dl | Collapse a data_list into a single dataframe |
colour_scale | Return a colour ramp for a given vector |
convert_uids | Convert unique identifiers of data_list to 'subjectkey' |
cort_sa | Mock ABCD cortical surface area data |
cort_t | Mock ABCD cortical thickness data |
depress | Mock ABCD depression data |
diagnosis_df | Mock diagnosis data |
discretisation | Internal function for 'estimate_nclust_given_graph' |
discretisation_evec_data | Internal function for 'estimate_nclust_given_graph' |
dl_has_duplicates | Check if data list contains any duplicate features |
dl_uid_first_col | Make the subjectkey UID columns of a data_list first |
dl_variable_summary | Variable-level summary of a data_list |
domains | Domains |
domain_merge | SNF scheme: Domain merge |
drop_inputs | Execute inclusion |
esm_manhattan_plot | Manhattan plot of feature-cluster association p-values |
estimate_nclust_given_graph | Estimate number of clusters for a similarity matrix |
euclidean_distance | Distance metric: Euclidean distance |
expression_df | Modification of SNFtool mock dataframe "Data1" |
extend_solutions | Extend an solutions matrix to include outcome evaluations |
fav_colour | Mock ABCD "colour" data |
fisher_exact_pval | Fisher exact test p-value |
gender_df | Mock gender data |
generate_annotations_list | Generate annotations list |
generate_clust_algs_list | Generate a list of custom clustering algorithms |
generate_data_list | Generate a data_list |
generate_distance_metrics_list | Generate a list of distance metrics |
generate_settings_matrix | Build a settings matrix |
generate_weights_matrix | Generate a matrix to store feature weights |
get_clusters | Extract cluster membership vector from one solutions matrix row |
get_cluster_df | Extract cluster membership information from one solutions matrix row |
get_cluster_solutions | Extract cluster membership information from a solutions_matrix |
get_complete_uids | Pull complete-data UIDs from a list of dataframes |
get_dist_matrix | Calculate distance matrices |
get_dl_subjects | Extract subjects from a data_list |
get_heatmap_order | Return the row or column ordering present in a heatmap |
get_matrix_order | Return the hierarchical clustering order of a matrix |
get_mean_pval | Get mean p-value |
get_min_pval | Get minimum p-value |
get_pvals | Get p-values from an extended solutions matrix |
get_representative_solutions | Extract representative solutions from a matrix of ARIs |
gower_distance | Distance metric: Gower distance |
hamming_distance | Distance metric: Hamming distance |
income | Mock ABCD income data |
individual | SNF Scheme: Individual |
jitter_plot | Jitter plot separating a feature by cluster |
label_prop | Label propagation |
label_splits | Convert a vector of partition indices into meta cluster labels |
linear_adjust | Linearly correct data_list by features with unwanted signal |
linear_model_pval | Linear model p-value (generic) |
list_remove | Remove items from a data_list |
lp_solutions_matrix | Label propagate cluster solutions to unclustered subjects |
mc_manhattan_plot | Manhattan plot of feature-meta cluster associaiton p-values |
merge_data_lists | Horizontally merge compatible data lists |
merge_df_list | Merge list of dataframes |
methylation_df | Modification of SNFtool mock dataframe "Data2" |
no_subs | Select all columns of a dataframe not starting with the 'subject_' prefix. |
numcol_to_numeric | Convert dataframe columns to numeric type |
ord_reg_pval | Ordinal regression p-value |
parallel_batch_snf | Parallel processing form of batch_snf |
prefix_dl_sk | Add "subject_" prefix to all UID values in subjectkey column |
pubertal | Mock ABCD pubertal status data |
pval_heatmap | Heatmap of p-values |
random_removal | Generate random removal sequence |
reduce_dl_to_common | Reduce data_list to common subjects |
remove_dl_na | Remove NAs from a data_list object |
rename_dl | Rename features in a data_list |
reorder_dl_subs | Reorder the subjects in a data_list |
resample | Helper resample function found in ?sample |
save_heatmap | Save a heatmap object to a file |
scale_diagonals | Adjust the diagonals of a matrix |
settings_matrix_heatmap | Heatmap for visualizing a settings matrix |
sew_euclidean_distance | Squared (excluding weights) Euclidean distance |
shiny_annotator | Launch shiny app to identify meta cluster boundaries |
similarity_matrix_heatmap | Plot heatmap of similarity matrix |
similarity_matrix_path | Generate a complete path and filename to store an similarity matrix |
siw_euclidean_distance | Squared (including weights) Euclidean distance |
snf_step | Convert a data list to a similarity matrix through a variety of SNF schemes |
sn_euclidean_distance | Distance metric: Standard normalization then Euclidean |
spectral_eigen | Clustering algorithm: Spectral clustering with eigen-gap heuristic |
spectral_eigen_classic | Clustering algorithm: Spectral clustering with eigen-gap heuristic |
spectral_eight | Clustering algorithm: Spectral clustering for a eight cluster solution |
spectral_five | Clustering algorithm: Spectral clustering for a five cluster solution |
spectral_four | Clustering algorithm: Spectral clustering for a four cluster solution |
spectral_nine | Clustering algorithm: Spectral clustering for a nine cluster solution |
spectral_rot | Clustering algorithm: Spectral clustering with rotation cost heuristic |
spectral_rot_classic | Clustering algorithm: Spectral clustering with rotation cost heuristic |
spectral_seven | Clustering algorithm: Spectral clustering for a seven cluster solution |
spectral_six | Clustering algorithm: Spectral clustering for a six cluster solution |
spectral_ten | Clustering algorithm: Spectral clustering for a ten cluster solution |
spectral_three | Clustering algorithm: Spectral clustering for a three cluster solution |
spectral_two | Clustering algorithm: Spectral clustering for a two cluster solution |
split_parser | Helper function to determine which row and columns to split on |
subc_v | Mock ABCD subcortical volumes data |
subs | Select all columns of a dataframe starting with a given string prefix. |
subsample_data_list | Create subsamples of a data_list |
subsample_pairwise_aris | Calculate pairwise adjusted Rand indices across subsamples of data |
summarize_clust_algs_list | Summarize a clust_algs_list object |
summarize_dl | Summarize a data list |
summarize_dml | Summarize metrics contained in a distance_metrics_list |
summarize_pvals | Summarize p-value columns of an extended solutions matrix |
train_test_assign | Training and testing split |
two_step_merge | Two step SNF |
var_manhattan_plot | Manhattan plot of feature-feature associaiton p-values |