CRAN Package Check Results for Maintainer ‘Amanda Ellis <arelli4 at uky.edu>’

Last updated on 2024-11-15 19:49:47 CET.

Package NOTE OK
npmv 10 3

Package npmv

Current CRAN status: NOTE: 10, OK: 3

Version: 2.4.0
Check: Rd files
Result: NOTE checkRd: (-1) nonpartest.Rd:69: Lost braces; missing escapes or markup? 69 | \[H=(1/(a-1))*sum_{i=1}^a n (Rbar_{i .}-Rbar_{..})(Rbar_{i.}-Rbar_{..})' \] | ^ checkRd: (-1) nonpartest.Rd:69: Lost braces; missing escapes or markup? 69 | \[H=(1/(a-1))*sum_{i=1}^a n (Rbar_{i .}-Rbar_{..})(Rbar_{i.}-Rbar_{..})' \] | ^ checkRd: (-1) nonpartest.Rd:69: Lost braces; missing escapes or markup? 69 | \[H=(1/(a-1))*sum_{i=1}^a n (Rbar_{i .}-Rbar_{..})(Rbar_{i.}-Rbar_{..})' \] | ^ checkRd: (-1) nonpartest.Rd:69: Lost braces; missing escapes or markup? 69 | \[H=(1/(a-1))*sum_{i=1}^a n (Rbar_{i .}-Rbar_{..})(Rbar_{i.}-Rbar_{..})' \] | ^ checkRd: (-1) nonpartest.Rd:69: Lost braces; missing escapes or markup? 69 | \[H=(1/(a-1))*sum_{i=1}^a n (Rbar_{i .}-Rbar_{..})(Rbar_{i.}-Rbar_{..})' \] | ^ checkRd: (-1) nonpartest.Rd:70: Lost braces; missing escapes or markup? 70 | \[G=(1/(N-1))*sum_{i=1}^a sum_{j=1}^n(R_{ij}-Rbar_{i.})(R_{ij}-Rbar_{i.})'\] | ^ checkRd: (-1) nonpartest.Rd:70: Lost braces; missing escapes or markup? 70 | \[G=(1/(N-1))*sum_{i=1}^a sum_{j=1}^n(R_{ij}-Rbar_{i.})(R_{ij}-Rbar_{i.})'\] | ^ checkRd: (-1) nonpartest.Rd:70: Lost braces; missing escapes or markup? 70 | \[G=(1/(N-1))*sum_{i=1}^a sum_{j=1}^n(R_{ij}-Rbar_{i.})(R_{ij}-Rbar_{i.})'\] | ^ checkRd: (-1) nonpartest.Rd:70: Lost braces; missing escapes or markup? 70 | \[G=(1/(N-1))*sum_{i=1}^a sum_{j=1}^n(R_{ij}-Rbar_{i.})(R_{ij}-Rbar_{i.})'\] | ^ checkRd: (-1) nonpartest.Rd:70: Lost braces; missing escapes or markup? 70 | \[G=(1/(N-1))*sum_{i=1}^a sum_{j=1}^n(R_{ij}-Rbar_{i.})(R_{ij}-Rbar_{i.})'\] | ^ checkRd: (-1) nonpartest.Rd:70: Lost braces; missing escapes or markup? 70 | \[G=(1/(N-1))*sum_{i=1}^a sum_{j=1}^n(R_{ij}-Rbar_{i.})(R_{ij}-Rbar_{i.})'\] | ^ checkRd: (-1) nonpartest.Rd:75: Lost braces; missing escapes or markup? 75 | \[fhat_1=(tr(G)^2/tr(G^2)) and fhat_2= (a^2)/((a-1)sum^a_{i=1}(1)/(n_i-1))* fhat_1 | ^ checkRd: (-1) nonpartest.Rd:78: Lost braces; missing escapes or markup? 78 | \[U=tr[(a-1)H((N-a)G)^{-1}]\] Using the McKeon approximation the distribution of U is approximated by a "stretched" F distribution with degrees freedom K and D where: | ^ checkRd: (-1) nonpartest.Rd:83: Lost braces; missing escapes or markup? 83 | \[V= tr\{(a-1)H[(a-1)H+(N-a)G]^{-1}\}\] | ^ checkRd: (-1) nonpartest.Rd:92: Lost braces; missing escapes or markup? 92 | \[F_lambda=[(1-lambda^{1/t})/(lambda^{1/t})](df_2/df_1)\] | ^ checkRd: (-1) nonpartest.Rd:92: Lost braces; missing escapes or markup? 92 | \[F_lambda=[(1-lambda^{1/t})/(lambda^{1/t})](df_2/df_1)\] | ^ checkRd: (-1) nonpartest.Rd:98: Lost braces 98 | \[p(a-1)=2 then t=1, else t=sqrt{ (p^2(a-1)^2-4)/(p^2+(a-1)^2-5) }\] | ^ checkRd: (-1) ssnonpartest.Rd:64: Lost braces; missing escapes or markup? 64 | \[H=(1/(a-1))*sum_{i=1}^a n (Rbar_{i .}-Rbar_{..})(Rbar_{i.}-Rbar_{..})' \] | ^ checkRd: (-1) ssnonpartest.Rd:64: Lost braces; missing escapes or markup? 64 | \[H=(1/(a-1))*sum_{i=1}^a n (Rbar_{i .}-Rbar_{..})(Rbar_{i.}-Rbar_{..})' \] | ^ checkRd: (-1) ssnonpartest.Rd:64: Lost braces; missing escapes or markup? 64 | \[H=(1/(a-1))*sum_{i=1}^a n (Rbar_{i .}-Rbar_{..})(Rbar_{i.}-Rbar_{..})' \] | ^ checkRd: (-1) ssnonpartest.Rd:64: Lost braces; missing escapes or markup? 64 | \[H=(1/(a-1))*sum_{i=1}^a n (Rbar_{i .}-Rbar_{..})(Rbar_{i.}-Rbar_{..})' \] | ^ checkRd: (-1) ssnonpartest.Rd:64: Lost braces; missing escapes or markup? 64 | \[H=(1/(a-1))*sum_{i=1}^a n (Rbar_{i .}-Rbar_{..})(Rbar_{i.}-Rbar_{..})' \] | ^ checkRd: (-1) ssnonpartest.Rd:65: Lost braces; missing escapes or markup? 65 | \[G=(1/(N-1))*sum_{i=1}^a sum_{j=1}^n(R_{ij}-Rbar_{i.})(R_{ij}-Rbar_{i.})'\] | ^ checkRd: (-1) ssnonpartest.Rd:65: Lost braces; missing escapes or markup? 65 | \[G=(1/(N-1))*sum_{i=1}^a sum_{j=1}^n(R_{ij}-Rbar_{i.})(R_{ij}-Rbar_{i.})'\] | ^ checkRd: (-1) ssnonpartest.Rd:65: Lost braces; missing escapes or markup? 65 | \[G=(1/(N-1))*sum_{i=1}^a sum_{j=1}^n(R_{ij}-Rbar_{i.})(R_{ij}-Rbar_{i.})'\] | ^ checkRd: (-1) ssnonpartest.Rd:65: Lost braces; missing escapes or markup? 65 | \[G=(1/(N-1))*sum_{i=1}^a sum_{j=1}^n(R_{ij}-Rbar_{i.})(R_{ij}-Rbar_{i.})'\] | ^ checkRd: (-1) ssnonpartest.Rd:65: Lost braces; missing escapes or markup? 65 | \[G=(1/(N-1))*sum_{i=1}^a sum_{j=1}^n(R_{ij}-Rbar_{i.})(R_{ij}-Rbar_{i.})'\] | ^ checkRd: (-1) ssnonpartest.Rd:65: Lost braces; missing escapes or markup? 65 | \[G=(1/(N-1))*sum_{i=1}^a sum_{j=1}^n(R_{ij}-Rbar_{i.})(R_{ij}-Rbar_{i.})'\] | ^ checkRd: (-1) ssnonpartest.Rd:70: Lost braces; missing escapes or markup? 70 | \[fhat_1=(tr(G)^2/tr(G^2)) and fhat_2= (a^2)/((a-1)sum^a_{i=1}(1)/(n_i-1))* fhat_1 | ^ checkRd: (-1) ssnonpartest.Rd:73: Lost braces; missing escapes or markup? 73 | \[U=tr[(a-1)H((N-a)G)^{-1}]\] Using the McKeon approximation the distribution of U is approximated by a "stretched" F distribution with degrees freedom K and D where: | ^ checkRd: (-1) ssnonpartest.Rd:78: Lost braces; missing escapes or markup? 78 | \[V= tr\{(a-1)H[(a-1)H+(N-a)G]^{-1}\}\] | ^ checkRd: (-1) ssnonpartest.Rd:87: Lost braces; missing escapes or markup? 87 | \[F_lambda=[(1-lambda^{1/t})/(lambda^{1/t})](df_2/df_1)\] | ^ checkRd: (-1) ssnonpartest.Rd:87: Lost braces; missing escapes or markup? 87 | \[F_lambda=[(1-lambda^{1/t})/(lambda^{1/t})](df_2/df_1)\] | ^ checkRd: (-1) ssnonpartest.Rd:93: Lost braces 93 | \[p(a-1)=2 then t=1, else t=sqrt{ (p^2(a-1)^2-4)/(p^2+(a-1)^2-5) }\] | ^ Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64