CRAN Package Check Results for Maintainer ‘Chen Dong <chendong.math.umd at gmail.com>’

Last updated on 2024-12-18 19:49:34 CET.

Package NOTE
BANOVA 13

Package BANOVA

Current CRAN status:

Version: 1.2.1
Check: C++ specification
Result: NOTE Specified C++11: please drop specification unless essential Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64, r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Version: 1.2.1
Check: Rd files
Result: NOTE checkRd: (-1) BANOVA-package.Rd:29: Lost braces; missing escapes or markup? 29 | where \eqn{Z_{s,k} }is an element of \eqn{Z}, a \eqn{S \times Q} matrix of covariates. \eqn{\theta_{j,k}^p} is a hyperparameter which captures the effects of between-subjects factor \eqn{q} on the parameter \eqn{\beta_{j,s}^p} of within-subjects factor p. The error \eqn{\delta_{j,s}^p} is assumed to be normal: \eqn{\delta_{j,s}^p} {~} \eqn{N(0,\sigma_p^{-2} )}. Proper, but diffuse priors are assumed: \eqn{\theta_{j,k}^p} {~} \eqn{N(0,\gamma)}, and \eqn{\sigma_p^{-2}} {~} \eqn{Gamma(a,b)}, where \eqn{\gamma,a,b} are hyper-parameters. The default setting is \eqn{\gamma = 10^{-4}, a = 1, b = 1}. \cr | ^ checkRd: (-1) BANOVA-package.Rd:29: Lost braces; missing escapes or markup? 29 | where \eqn{Z_{s,k} }is an element of \eqn{Z}, a \eqn{S \times Q} matrix of covariates. \eqn{\theta_{j,k}^p} is a hyperparameter which captures the effects of between-subjects factor \eqn{q} on the parameter \eqn{\beta_{j,s}^p} of within-subjects factor p. The error \eqn{\delta_{j,s}^p} is assumed to be normal: \eqn{\delta_{j,s}^p} {~} \eqn{N(0,\sigma_p^{-2} )}. Proper, but diffuse priors are assumed: \eqn{\theta_{j,k}^p} {~} \eqn{N(0,\gamma)}, and \eqn{\sigma_p^{-2}} {~} \eqn{Gamma(a,b)}, where \eqn{\gamma,a,b} are hyper-parameters. The default setting is \eqn{\gamma = 10^{-4}, a = 1, b = 1}. \cr | ^ checkRd: (-1) BANOVA-package.Rd:29: Lost braces; missing escapes or markup? 29 | where \eqn{Z_{s,k} }is an element of \eqn{Z}, a \eqn{S \times Q} matrix of covariates. \eqn{\theta_{j,k}^p} is a hyperparameter which captures the effects of between-subjects factor \eqn{q} on the parameter \eqn{\beta_{j,s}^p} of within-subjects factor p. The error \eqn{\delta_{j,s}^p} is assumed to be normal: \eqn{\delta_{j,s}^p} {~} \eqn{N(0,\sigma_p^{-2} )}. Proper, but diffuse priors are assumed: \eqn{\theta_{j,k}^p} {~} \eqn{N(0,\gamma)}, and \eqn{\sigma_p^{-2}} {~} \eqn{Gamma(a,b)}, where \eqn{\gamma,a,b} are hyper-parameters. The default setting is \eqn{\gamma = 10^{-4}, a = 1, b = 1}. \cr | ^ checkRd: (-1) BANOVA.Bernoulli.Rd:56: Lost braces; missing escapes or markup? 56 | \eqn{y_i} {~} \eqn{Binomial(1,p_i)}, \eqn{p_i = logit^{-1}(\eta_i)} \cr | ^ checkRd: (-1) BANOVA.Binomial.Rd:59: Lost braces; missing escapes or markup? 59 | \eqn{y_i} {~} \eqn{Binomial(ntrials,p_i)}, \eqn{p_i = logit^{-1}(\eta_i)} \cr | ^ checkRd: (-1) BANOVA.Normal.Rd:58: Lost braces; missing escapes or markup? 58 | \eqn{y_i} {~} \eqn{Normal(\eta_i,\sigma^{-2})} \cr | ^ checkRd: (-1) BANOVA.Normal.Rd:59: Lost braces; missing escapes or markup? 59 | where \eqn{\eta_i = \sum_{p = 0}^{P}\sum_{j=1}^{J_p}X_{i,j}^p\beta_{j,s_i}^p}, \eqn{s_i} is the subject id of response \eqn{i}, \eqn{\sigma^{-2}} {~} {Gamma(\eqn{\alpha,\beta})}. see \code{\link{BANOVA-package}} | ^ checkRd: (-1) BANOVA.Normal.Rd:59: Lost braces 59 | where \eqn{\eta_i = \sum_{p = 0}^{P}\sum_{j=1}^{J_p}X_{i,j}^p\beta_{j,s_i}^p}, \eqn{s_i} is the subject id of response \eqn{i}, \eqn{\sigma^{-2}} {~} {Gamma(\eqn{\alpha,\beta})}. see \code{\link{BANOVA-package}} | ^ checkRd: (-1) BANOVA.Poisson.Rd:54: Lost braces; missing escapes or markup? 54 | \eqn{y_i} {~} \eqn{Poisson(\lambda_i)}, \eqn{\lambda_i = exp(\eta_i + \epsilon_i)} \cr | ^ checkRd: (-1) BANOVA.T.Rd:57: Lost braces; missing escapes or markup? 57 | \eqn{y_i} {~} \eqn{t(\nu, \eta_i,\sigma^{-2})} \cr | ^ checkRd: (-1) BANOVA.T.Rd:58: Lost braces; missing escapes or markup? 58 | where \eqn{\eta_i = \sum_{p = 0}^{P}\sum_{j=1}^{J_p}X_{i,j}^p\beta_{j,s_i}^p}, \eqn{s_i} is the subject id of response \eqn{i}, see \code{\link{BANOVA-package}}. The hyper parameters: \eqn{\nu} is the degree of freedom, \eqn{\nu} {~} {Piosson(\eqn{\lambda})} and \eqn{\sigma} is the scale parameter, \eqn{\sigma^{-2}} {~} {Gamma(\eqn{\alpha, \beta})}. | ^ checkRd: (-1) BANOVA.T.Rd:58: Lost braces 58 | where \eqn{\eta_i = \sum_{p = 0}^{P}\sum_{j=1}^{J_p}X_{i,j}^p\beta_{j,s_i}^p}, \eqn{s_i} is the subject id of response \eqn{i}, see \code{\link{BANOVA-package}}. The hyper parameters: \eqn{\nu} is the degree of freedom, \eqn{\nu} {~} {Piosson(\eqn{\lambda})} and \eqn{\sigma} is the scale parameter, \eqn{\sigma^{-2}} {~} {Gamma(\eqn{\alpha, \beta})}. | ^ checkRd: (-1) BANOVA.T.Rd:58: Lost braces; missing escapes or markup? 58 | where \eqn{\eta_i = \sum_{p = 0}^{P}\sum_{j=1}^{J_p}X_{i,j}^p\beta_{j,s_i}^p}, \eqn{s_i} is the subject id of response \eqn{i}, see \code{\link{BANOVA-package}}. The hyper parameters: \eqn{\nu} is the degree of freedom, \eqn{\nu} {~} {Piosson(\eqn{\lambda})} and \eqn{\sigma} is the scale parameter, \eqn{\sigma^{-2}} {~} {Gamma(\eqn{\alpha, \beta})}. | ^ checkRd: (-1) BANOVA.T.Rd:58: Lost braces 58 | where \eqn{\eta_i = \sum_{p = 0}^{P}\sum_{j=1}^{J_p}X_{i,j}^p\beta_{j,s_i}^p}, \eqn{s_i} is the subject id of response \eqn{i}, see \code{\link{BANOVA-package}}. The hyper parameters: \eqn{\nu} is the degree of freedom, \eqn{\nu} {~} {Piosson(\eqn{\lambda})} and \eqn{\sigma} is the scale parameter, \eqn{\sigma^{-2}} {~} {Gamma(\eqn{\alpha, \beta})}. | ^ checkRd: (-1) BANOVA.ordMultinomial.Rd:63: Lost braces; missing escapes or markup? 63 | {...} \cr | ^ checkRd: (-1) BANOVA.ordMultinomial.Rd:66: Lost braces; missing escapes or markup? 66 | where \eqn{\epsilon_i} {~} logistic \eqn{(0,1)}, \eqn{c_\ell, (\ell = 2,...L-1)} are cut points, \eqn{c_\ell} {~} \eqn{N(0, \bar{\sigma}_\ell^2)}, and \eqn{\bar{\sigma}_\ell^2} {~} \eqn{Uniform(0, d)}, with \eqn{d} a hyper-parameter. \cr \eqn{\eta_i = \sum_{p = 0}^{P}\sum_{j=1}^{J_p}X_{i,j}^p\beta_{j,s_i}^p}, \eqn{s_i} is the subject id of response \eqn{i}. see \code{\link{BANOVA-package}} | ^ checkRd: (-1) BANOVA.ordMultinomial.Rd:66: Lost braces; missing escapes or markup? 66 | where \eqn{\epsilon_i} {~} logistic \eqn{(0,1)}, \eqn{c_\ell, (\ell = 2,...L-1)} are cut points, \eqn{c_\ell} {~} \eqn{N(0, \bar{\sigma}_\ell^2)}, and \eqn{\bar{\sigma}_\ell^2} {~} \eqn{Uniform(0, d)}, with \eqn{d} a hyper-parameter. \cr \eqn{\eta_i = \sum_{p = 0}^{P}\sum_{j=1}^{J_p}X_{i,j}^p\beta_{j,s_i}^p}, \eqn{s_i} is the subject id of response \eqn{i}. see \code{\link{BANOVA-package}} | ^ checkRd: (-1) BANOVA.ordMultinomial.Rd:66: Lost braces; missing escapes or markup? 66 | where \eqn{\epsilon_i} {~} logistic \eqn{(0,1)}, \eqn{c_\ell, (\ell = 2,...L-1)} are cut points, \eqn{c_\ell} {~} \eqn{N(0, \bar{\sigma}_\ell^2)}, and \eqn{\bar{\sigma}_\ell^2} {~} \eqn{Uniform(0, d)}, with \eqn{d} a hyper-parameter. \cr \eqn{\eta_i = \sum_{p = 0}^{P}\sum_{j=1}^{J_p}X_{i,j}^p\beta_{j,s_i}^p}, \eqn{s_i} is the subject id of response \eqn{i}. see \code{\link{BANOVA-package}} | ^ Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-x86_64, r-patched-linux-x86_64, r-release-linux-x86_64, r-release-macos-arm64, r-release-macos-x86_64, r-release-windows-x86_64

Version: 1.2.1
Check: Rd cross-references
Result: NOTE Found the following Rd file(s) with Rd \link{} targets missing package anchors: BANOVA.run.Rd: rstan pairs.BANOVA.Rd: rstan Please provide package anchors for all Rd \link{} targets not in the package itself and the base packages. Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-windows-x86_64