
Package ‘AuxSurvey’
December 9, 2024

Title Survey Analysis with Auxiliary Discretized Variables

Version 0.9

Author Jungang Zou [aut, cre],
Yutao Liu [aut],
Sharifa Williams [aut],
Qixuan Chen [aut]

Maintainer Jungang Zou <jungang.zou@gmail.com>

Description Probability surveys often use auxiliary continuous data from administra-
tive records, but the utility of this data is diminished when it is discretized for confidential-
ity. We provide a set of survey estimators to make full use of information from the discretized vari-
ables. See Williams, S.Z., Zou, J., Liu, Y., Si, Y., Galea, S. and Chen, Q. (2024) <doi:10.1002/sim.10270> for de-
tails.

Encoding UTF-8

RoxygenNote 7.3.2

Depends mgcv, rstanarm, stats

Imports survey, gtools, coda, BART, dplyr, stringr, gridExtra, rlang

License Apache License (>= 2)

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2024-12-09 20:00:06 UTC

Contents
auxsurvey . 2
postStr_wt . 4
rake_wt . 6
simulate . 8
svyBayesmod . 9
uwt . 11

Index 13

1

https://doi.org/10.1002/sim.10270

2 auxsurvey

auxsurvey Auxiliary Variables in Survey Analysis

Description

This function provides a user-friendly interface for various estimators in survey analysis when work-
ing with discretized auxiliary variables. Probability surveys often use continuous data from admin-
istrative records as auxiliary variables, but the utility of this data is diminished when discretized for
confidentiality purposes. This package offers different estimators that handle discretized auxiliary
variables effectively.

Usage

auxsurvey(
formula,
auxiliary = NULL,
samples,
population = NULL,
subset = NULL,
family = gaussian(),
method = c("sample_mean", "rake", "postStratify", "MRP", "GAMP", "linear", "BART"),
weights = NULL,
levels = c(0.95, 0.8, 0.5),
stan_verbose = TRUE,
show_plot = TRUE,
nskip = 1000,
npost = 1000,
nchain = 4,
HPD_interval = FALSE,
seed = NULL

)

Arguments

formula A string or formula specifying the outcome model. For non-model-based meth-
ods (e.g., sample mean, raking, post-stratification), only include the outcome
variable (e.g., "~Y"). For model-based methods (e.g., MRP, GAMP, linear re-
gression), additional fixed effect predictors can be specified, such as "Y ~ X1
+ X2 + I(X^2)". For GAMP, smooth functions can be specified as "Y ~ X1 +
s(X2, 10) + s(X3, by = X1)". Categorical variables are automatically treated as
dummy variables in model-based methods.

auxiliary A string specifying the formula for the auxiliary variables. For sample mean
and BART, this should be NULL. For raking, post-stratification, and GAMP, this
should be an additive model (e.g., "Z1 + Z2 + Z3"). For MRP, specify random
effects for terms in this parameter, such as "Z1 + Z2 + Z3" or "Z1 + Z2:Z3".

samples A dataframe or tibble containing all variables specified in formula and auxiliary.
This is typically a subset of the population.

auxsurvey 3

population A dataframe or tibble containing all variables specified in formula and auxiliary.
This is the entire population used for estimation.

subset A character vector representing filtering conditions to select subsets of samples
and population. Default is NULL, in which case the analysis is performed on
the entire dataset. If subsets are specified, estimates for both the whole data and
the subsets will be calculated.

family The distribution family of the outcome variable. Supported options are: gaussian
for continuous outcomes and binomial for binary outcomes.

method A string specifying the model to use. Options include "sample_mean", "rake",
"postStratify", "MRP", "GAMP", "linear", and "BART".

weights A numeric vector of case weights. The length should match the number of cases
in samples.

levels A numeric vector specifying the confidence levels for the confidence intervals
(CIs). Multiple values can be specified to calculate multiple CIs.

stan_verbose A logical scalar; if TRUE, prints all messages when running Stan models. Default
is FALSE. This parameter only applies to Bayesian models.

show_plot A logical scalar; if TRUE, shows diagnostic plots for Stan models. Default is
FALSE. This parameter only applies to Bayesian models.

nskip An integer specifying the number of burn-in iterations for each chain in MCMC
for Stan models. Default is 1000. This parameter only applies to Bayesian
models.

npost An integer specifying the number of posterior sampling iterations for each chain
in MCMC for Stan models. Default is 1000. This parameter only applies to
Bayesian models.

nchain An integer specifying the number of MCMC chains for Stan models. Default is
4. This parameter only applies to Bayesian models.

HPD_interval A logical scalar; if TRUE, calculates the highest posterior density (HPD) intervals
for the CIs of Stan models. Default is FALSE, in which case symmetric intervals
are calculated. This parameter only applies to Bayesian models.

seed An integer specifying the random seed for reproducibility. Default is NULL.

Details

The available estimators include:

• Weighted or unweighted sample mean

• Weighted or unweighted raking

• Weighted or unweighted post-stratification

• Bayesian methods:

– BART (Bayesian Additive Regression Trees)
– MRP (Multilevel Regression with Poststratification)
– GAMP (Generalized Additive Model of Response Propensity)
– Weighted linear regression

These Bayesian models are implemented using the rstan and rstanarm packages.

4 postStr_wt

Value

A list containing the sample mean estimates and CIs for the subset and/or the whole dataset. Each
element in the list includes: - estimate: The point estimate of the sample mean. - CI: Confidence
intervals for the sample mean. - Other elements for each confidence level specified in levels.

Examples

Simulate data with nonlinear association (setting 3).
data = simulate(N = 3000, discretize = 10, setting = 3, seed = 123)
population = data$population
samples = data$samples
ipw = 1 / samples$true_pi
true_mean = mean(population$Y1)

IPW Sample Mean
IPW_sample_mean = auxsurvey("~Y1", auxiliary = NULL, weights = ipw,

samples = samples, population = population,
subset = c("Z1 == 1 & Z2 == 1"), method = "sample_mean",
levels = 0.95)

Raking
rake = auxsurvey("~Y1", auxiliary = "Z1 + Z2 + Z3 + auX_10", samples = samples,

population = population, subset = c("Z1 == 1", "Z1 == 1 & Z2 == 1"),
method = "rake", levels = 0.95)

MRP
MRP = auxsurvey("Y1 ~ 1 + Z1", auxiliary = "Z2 + Z3:auX_10", samples = samples,

population = population, subset = c("Z1 == 1", "Z1 == 1 & Z2 == 1"),
method = "MRP", levels = 0.95, nskip = 4000, npost = 4000,
nchain = 1, stan_verbose = FALSE, HPD_interval = TRUE)

GAMP
GAMP = auxsurvey("Y1 ~ 1 + Z1 + Z2 + Z3", auxiliary = "s(auX_10) + s(logit_true_pi, by = Z1)",

samples = samples, population = population, method = "GAMP",
levels = 0.95, nskip = 4000, npost = 4000, nchain = 1,
stan_verbose = FALSE, HPD_interval = TRUE)

BART
BART = auxsurvey("Y1 ~ Z1 + Z2 + Z3 + auX_10", auxiliary = NULL, samples = samples,

population = population, method = "BART", levels = 0.95,
nskip = 4000, npost = 4000, nchain = 1, HPD_interval = TRUE)

postStr_wt Weighted or Unweighted Post-Stratification Estimator

postStr_wt 5

Description

This function performs post-stratification adjustment for survey data, which adjusts the sample
weights to match the marginal distributions of auxiliary variables in the population. It supports both
weighted and unweighted estimations for various outcome variables, including Gaussian (continu-
ous) and Binomial (binary) outcomes. The function computes estimates and confidence intervals
(CIs) for the outcome variable using post-stratification based on the specified auxiliary variables.

Usage

postStr_wt(
svysmpl,
svypopu,
auxVars,
svyVar,
subset = NULL,
family = gaussian(),
invlvls,
weights = NULL

)

Arguments

svysmpl A dataframe or tibble representing the sample data (samples). This should con-
tain the outcome variable and any auxiliary variables.

svypopu A dataframe or tibble representing the population data (population). This is
used to compute the finite population correction (FPC) for post-stratification.

auxVars A character vector containing the names of auxiliary variables to be used for
post-stratification. These variables will be used to adjust the weights.

svyVar The outcome variable for which the post-stratification estimate is calculated.

subset A character vector representing filtering conditions to select subsets of the sam-
ple and population. Default is NULL, in which case the analysis is performed on
the entire dataset. If subsets are specified, estimates for both the whole data and
the subsets will also be calculated.

family The distribution family of the outcome variable. Supported options are: gaussian
for continuous outcomes and binomial for binary outcomes.

invlvls A numeric vector specifying the confidence levels for the post-stratification es-
timators. If more than one value is provided, multiple CIs will be calculated.

weights A numeric vector of case weights. The length should match the number of
cases in svysmpl. These weights are used in the weighted post-stratification
adjustment.

Value

A list where each element contains the post-stratification estimate and confidence intervals (CIs)
for a subset or the entire dataset. The list includes: - est: The post-stratification estimate for the
outcome variable. - se: The standard error of the estimate. - tCI: The confidence intervals for the

6 rake_wt

estimate. - sample_size: The sample size for the subset or entire dataset. - population_size:
The population size, if provided, including the finite population correction (FPC).

Examples

Simulate data with nonlinear association (setting 3).
data = simulate(N = 3000, discretize = 3, setting = 3, seed = 123)
population = data$population # Population data (3000 cases)
samples = data$samples # Sample data (600 cases)
ipw = 1 / samples$true_pi # Compute inverse probability weights

Perform weighted post-stratification with auxiliary variables
auxVars = c("Z1", "Z2", "Z3")
Weighted_postStratify = postStr_wt(svysmpl = samples, svypopu = population, auxVars = auxVars,

svyVar = "Y1", subset = NULL, family = gaussian(),
invlvls = c(0.95), weights = ipw)

Weighted_postStratify

Perform unweighted post-stratification
Unweighted_postStratify = postStr_wt(svysmpl = samples, svypopu = population, auxVars = auxVars,

svyVar = "Y1", subset = NULL, family = gaussian(),
invlvls = c(0.95), weights = NULL)

Unweighted_postStratify

rake_wt Weighted or Unweighted Raking Estimator

Description

This function estimates the weighted or unweighted raking adjustment for survey data. Raking ad-
justs the sample weights to match the marginal distributions of auxiliary variables in the population.
It supports both weighted and unweighted estimations for a variety of outcome variables, including
Gaussian (continuous) and Binomial (binary) outcomes.

Usage

rake_wt(
svysmpl,
svypopu,
auxVars,
svyVar,
subset = NULL,
family = gaussian(),
invlvls,
weights = NULL,
maxiter = 50

)

rake_wt 7

Arguments

svysmpl A dataframe or tibble representing the sample data (samples). This should con-
tain the outcome variable and any auxiliary variables.

svypopu A dataframe or tibble representing the population data (population). This is
used to compute the finite population correction (FPC) for raking.

auxVars A character vector containing the names of auxiliary variables to be used for
raking. These variables will be used to adjust the weights.

svyVar The outcome variable for which the raking estimate is calculated.

subset A character vector representing filtering conditions to select subsets of the sam-
ple and population. Default is NULL, in which case the analysis is performed on
the entire dataset. If subsets are specified, estimates for both the whole data and
the subsets will be calculated.

family The distribution family of the outcome variable. Supported options are: gaussian
for continuous outcomes and binomial for binary outcomes.

invlvls A numeric vector specifying the confidence levels for the raking estimators. If
more than one value is provided, multiple CIs will be calculated.

weights A numeric vector of case weights. The length should match the number of cases
in svysmpl. These weights are used in the weighted raking adjustment.

maxiter An integer specifying the maximum number of iterations for the raking algo-
rithm. Default is 50.

Value

A list where each element contains the raking estimate and confidence intervals (CIs) for a subset or
the entire dataset. The list includes: - est: The raking estimate for the outcome variable. - se: The
standard error of the estimate. - tCI: Confidence intervals for the estimate. - sample_size: The
sample size for the subset or entire dataset. - population_size: The population size, if provided,
including the finite population correction (FPC).

Examples

Simulate data with nonlinear association (setting 3).
data = simulate(N = 3000, discretize = 3, setting = 3, seed = 123)
population = data$population # Population data (3000 cases)
samples = data$samples # Sample data (600 cases)
ipw = 1 / samples$true_pi # Compute inverse probability weights

Perform weighted raking with auxiliary variables
auxVars = c("Z1", "Z2", "Z3")
Weighted_rake = rake_wt(svysmpl = samples, svypopu = population, auxVars = auxVars,

svyVar = "Y1", subset = NULL, family = gaussian(),
invlvls = c(0.95), weights = ipw, maxiter = 50)

Weighted_rake

Perform unweighted raking
Unweighted_rake = rake_wt(svysmpl = samples, svypopu = population, auxVars = auxVars,

svyVar = "Y1", subset = NULL, family = gaussian(),

8 simulate

invlvls = c(0.95), weights = NULL, maxiter = 50)
Unweighted_rake

simulate Simulate Survey Data with Discretized Auxiliary Variables

Description

This function simulates survey data with discretized auxiliary variables. It generates a population
dataset with continuous and binary outcomes, and includes auxiliary variables that are discretized
into multiple categories. The function also generates a subset of the population as a sample, based
on the propensity scores.

Usage

simulate(N = 3000, discretize = c(3, 5, 10), setting = c(1, 2, 3), seed = NULL)

Arguments

N Number of population units to simulate. Default is 3000.

discretize A scale specifying the number of categories for discretizing continuous vari-
ables. The function discretizes both X and W into the specified categories. Default
is a number among (3, 5, 10).

setting A numeric value to specify the simulation setting. The settings define different
relationships between the outcome variables and the covariates. Possible values
are 1, 2, 3, and 4. Default is a number among c(1, 2, 3).

seed An optional random seed for reproducibility. Default is NULL.

Details

The function supports multiple simulation settings, where each setting modifies the relationships
between the outcome variables and the covariates.

Value

A list containing two elements:

• population: A tibble with the simulated population data, including both continuous and
binary outcomes, as well as auxiliary variables (both raw and discretized).

• samples: A tibble with the simulated sample data, where individuals are included based on
their estimated propensity scores.

svyBayesmod 9

Examples

Simulate survey data with setting 1 and discretizing variables 3 categories
data = simulate(N = 3000, discretize = 3, setting = 1, seed = 123)

Extract population and sample datasets
population = data$population
samples = data$samples

Examine the simulated population data
head(population)

svyBayesmod Bayesian Survey Model Estimation

Description

This function fits a Bayesian model using Stan for survey data. It allows you to specify the outcome
formula, the function for Stan, and apply different types of survey analysis, including weighted or
unweighted models, for both sample and population data. The function supports posterior estima-
tion, confidence intervals (CIs), and MCMC diagnostics.

Usage

svyBayesmod(
svysmpl,
svypopu,
outcome_formula,
BayesFun,
subset = NULL,
family = gaussian(),
invlvls,
weights = NULL,
nskip = 1000,
npost = 1000,
nchain = 4,
printmod = TRUE,
doFigure = FALSE,
useTrueSample = FALSE,
stan_verbose = FALSE,
HPD_CI = FALSE,
seed = NULL

)

Arguments

svysmpl A dataframe or tibble representing the sample data (samples). This should con-
tain the outcome variable and any additional covariates.

10 svyBayesmod

svypopu A dataframe or tibble representing the population data (population). This
should contain all variables in the model.

outcome_formula

A formula for Stan, specifying the outcome and predictors in the model.

BayesFun The name of the Stan function to be used for fitting the Bayesian model.

subset A character vector representing filtering conditions to select subsets of the sam-
ple and population. Default is NULL, in which case the analysis is performed on
the entire dataset. If specified, estimates for both the whole data and the subsets
will be calculated.

family The distribution family for the outcome variable. Currently, the following op-
tions are supported: gaussian for continuous outcomes and binomial for bi-
nary outcomes.

invlvls A numeric vector specifying the confidence levels for the credible intervals
(CIs). If more than one value is specified, multiple CIs will be calculated.

weights A numeric vector of case weights. The length of this vector should match the
number of cases in svysmpl. These weights will be used in the Bayesian model
for weighted estimation.

nskip An integer specifying the number of burn-in iterations for each chain in the
MCMC for Stan models. Default is 1000.

npost An integer specifying the number of posterior sampling iterations for each chain
in the MCMC for Stan models. Default is 1000.

nchain An integer specifying the number of MCMC chains for Stan models. Default is
4.

printmod A logical scalar; if TRUE, posterior estimates will be printed.

doFigure A logical scalar; if TRUE, MCMC diagnostic plots will be generated.

useTrueSample A logical scalar; if TRUE, the estimator will use true sample information.

stan_verbose A logical scalar; if TRUE, MCMC information will be printed during Stan model
fitting.

HPD_CI A logical scalar; if TRUE, the calculated credible intervals will be highest poste-
rior density intervals (HPD). Otherwise, symmetric intervals will be used. De-
fault is FALSE.

seed An integer specifying the random seed for reproducibility. Default is NULL.

Value

A list containing the Bayesian estimates and confidence intervals (CIs) for each subset or the entire
dataset. Each element in the list includes: - estimate: The Bayesian point estimate for the outcome.
- CI: The credible intervals for the outcome estimate. - Other elements based on the specified
confidence levels in invlvls.

Examples

Example usage with survey data:
Simulate sample and population data
data = simulate(N = 3000, discretize = 3, setting = 3, seed = 123)

uwt 11

population = data$population # Get population data
samples = data$samples # Get sample data
ipw = 1 / samples$true_pi # Compute inverse probability weights

Define outcome formula and Stan function
outcome_formula = "Y1 ~ Z1 + Z2 + Z3 + (1|auX_3)"
BayesFun = "stan_glmer"

Fit Bayesian model using weighted survey data
bayes_model = svyBayesmod(svysmpl = samples, svypopu = population,

outcome_formula = outcome_formula,
BayesFun = BayesFun, weights = ipw,
family = gaussian(), nskip = 2000, npost = 2000,

nchain = 2, printmod = TRUE, invlvls = 0.95, stan_verbose = TRUE)

uwt Weighted or Unweighted Sample Mean

Description

This function estimates the sample mean of an outcome variable using either weighted or un-
weighted methods. It supports calculating the sample mean with finite population correction (FPC)
when a population dataset is provided. The method can also compute confidence intervals (CIs) for
the sample mean using the specified distribution family (Gaussian or Binomial).

Usage

uwt(
svysmpl,
svyVar,
svypopu = NULL,
subset = NULL,
family = gaussian(),
invlvls,
weights = NULL

)

Arguments

svysmpl A dataframe or tibble representing the sample data (samples). This should con-
tain the outcome variable and any additional covariates.

svyVar The outcome variable to estimate the sample mean for (e.g., Y1).

svypopu A dataframe or tibble representing the population data (population). This is
used to compute the finite population correction (FPC) when calculating the
sample mean. Default is NULL.

12 uwt

subset A character vector representing filtering conditions to select subsets of the sam-
ple and population. Default is NULL, in which case the analysis is performed on
the entire dataset. If subsets are specified, estimates for both the whole data and
the subsets will be calculated.

family The distribution family of the outcome variable. Supported options are: gaussian
for continuous outcomes and binomial for binary outcomes.

invlvls A numeric vector specifying the confidence levels (CIs) for the estimators. If
more than one value is provided, multiple CIs will be calculated.

weights A numeric vector of case weights. The length should match the number of cases
in svysmpl. These weights are used for calculating the weighted sample mean.

Value

A list, where each element contains the sample mean estimate and CIs for a subset or the entire data.
The list includes: - est: The sample mean estimate. - se: The standard error of the sample mean
estimate. - tCI: The confidence intervals for the sample mean. - sample_size: The sample size
for the subset or entire dataset. - population_size: The population size, if a population dataset is
provided (applicable to finite population correction). The list is returned for each subset specified.

Examples

Simulate data with nonlinear association (setting 3).
data = simulate(N = 3000, discretize = 3, setting = 3, seed = 123)
population = data$population # Population data (3000 cases)
samples = data$samples # Sample data (600 cases)
ipw = 1 / samples$true_pi # Compute inverse probability weights

Estimate the weighted sample mean with IPW
IPW_sample_mean = uwt(svysmpl = samples, svyVar = "Y1", svypopu = population,

subset = c("Z1 == 1 & Z2 == 1"), family = gaussian(),
invlvls = c(0.95), weights = ipw)

IPW_sample_mean

Estimate the unweighted sample mean
unweighted_sample_mean = uwt(svysmpl = samples, svyVar = "Y1", svypopu = population,

subset = NULL, family = gaussian(), invlvls = c(0.95), weights = NULL)
unweighted_sample_mean

Index

auxsurvey, 2

binomial, 3, 5, 7, 10, 12

gaussian, 3, 5, 7, 10, 12

postStr_wt, 4

rake_wt, 6

simulate, 8
svyBayesmod, 9

uwt, 11

13

	auxsurvey
	postStr_wt
	rake_wt
	simulate
	svyBayesmod
	uwt
	Index

