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Abstract

This vignette relates to version 3.0 of the R package BinaryEPPM. The inclusion of
a vignette is part of the update from version 2.3, and describes using it in determining
maximum likelihood estimates of the parameters of extended Poisson process models
involving binary variables. These flexible models provide a family that can handle
unlimited under-dispersion, but limited over-dispersion, with respect to the binomial
distribution, with that distribution being a special case. Within BinaryEPPM, mod-
els with the mean and scale-factor related to covariates are constructed conforming
to a generalized linear model formulation. Combining such under-dispersed models
with over-dispersed models provides a general form of residual distribution for mod-
eling grouped binary data. Use of the package is illustrated by application to several
data-sets.

Keywords: binomial distribution, under-dispersion, over-dispersion, extended Poisson process mod-
els, double generalized linear models

1 Introduction

Modeling using extended Poisson process models (EPPMs) was originally developed in Faddy (1997) where
the construction of discrete probability distributions having very general dispersion properties was de-
scribed. Smith and Faddy (2016) was concerned with generalizations of the Poisson distribution to deal
with over- and under-dispersion. Similar generalizations of the binomial distribution exist, which are an-
other special case of the modeling described in Faddy (1997). Covariate dependence can be incorporated
via a re-parameterization using approximate forms of the mean and variance. The supplementary material
for Faddy and Smith (2012) contained R (R Core Team, 2024) code illustrating the fitting of these models.
This code has been extended and generalized to have inputs and outputs akin to those of the generalized
linear model (GLM) function glm from the packages stats and betareg (Cribari-Neto and Zeileis, 2010;
Grün et al., 2012). The distributions considered can be placed within either a single or double GLM
framework. Sáez-Castillo et al. (2023) describes a double GLM model formulation for related count data.

There are many distributional models available for over-dispersed binary data, for example as listed
in R package fitODBOD Mahendran and Wijekoon (2024). There are fewer available for under-dispersed
discrete (count or binary) data. With regard to count data, this is as noted by Huang (2023) who references
Sellers and Morris (2017), Zeviani et al. (2014). Although focused on the Conway-Maxwell-Poisson (CMP)
distribution applied to count data under- or over dispersed with respect to the Poisson distribution, Sellers
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et al. (2017) include data from Bailey (1990) as an example of under-dispersed binomial data. Although
a number of the probability distributions for handling over-dispersion can admit some under-dispersion,
where the residual variance is less than that corresponding to a binomial distribution, these may be rather
too limited for them to be considered general models for under-dispersed data. The EPPM extended
binomial complements these models by modeling under-dispersion (and limited over-dispersion). Both the
mean and scale-factor (or variance) can be formulated in terms of associated covariates. Observed under-
dispersed binary data can be modeled using the EPPM extended binomial distribution, leading to better
fitting models, model checking diagnostics, and assessment of the precision of any estimated quantities.

Data sets can be entered as either a data.frame with two columns for the dependent binary variable
i.e., as r/n where r is the number of successes and n the number of trials; or as a list of frequency
distributions (as list) of counts of values of r with n given by the length of the list. Illustrations of both
forms of data input are given in the examples. A range of link functions has been included. These represent
ones often used in areas such as bioassay.

2 Models

2.1 Extended Poisson process model

The models described in Faddy (1997) can be summarised as describing probability distributions on
0, 1, 2, · · · , n in terms of the vector of probabilities

p = (1 0 · · · 0) exp(Q), (1)

where Q is an (n+1)× (n+1) bi-diagonal matrix consisting of (Poisson process) rate parameters λi(> 0)
for i = 0, 1, . . . , n − 1 on the upper diagonal; and −λi for i = 0, 1, . . . , n (with λn = 0) on the
diagonal. A function of linearly decreasing λi’s

λi = a(n − i), for i = 0, 1, 2, . . . , n with a > 0 (2)

gives rise to the binomial distribution with probability p = 1−exp(−a). If covariates, x say, influence the
response then having log(a) = xTβ (the usual linear predictor) in this binomial special case corresponds
to generalized linear modeling with a complementary log-log link function (Dobson and Barnett, 2008,
Chapter 7). The complementary log-log link function arises naturally from this extended Poisson process
modeling, although other link functions (such as logistic) relevant to binary data could be used and have
been included. Faddy and Smith (2008) considered a generalization of Equation 2

λi = a(n − i)b, with b > 0 (3)

resulting in distributions analogous to those from correlated binomial modeling (Kupper and Haseman,
1978) with concave sequences of λi’s (0 < b < 1) corresponding to positive correlations and over-dispersion,
and convex sequences (b > 1) to negative correlations and under-dispersion. Here approximations for the
mean and variance of these distributions from Faddy (1997) are used to re-parameterize them in terms of
the probability of a success ps in a single Bernoulli trial and scale-factor fs for the variance of the number
of successes in n trials as in Equations 4 and 5.

ps =
mean

n
≈ 1 −

{

1 − anb−1(1 − b)
}

1

1−b (4)

and fs =
variance

nps(1 − ps)
≈

(1 − ps)
2b−1 − 1

ps(1 − 2b)
(5)

with substantial under-dispersion possible for large b (fs → 0 as b → ∞) while over-dispersion is limited
by fs < 1

1−ps

(the value for b → 0). Since the complementary probability distribution of the number of
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failures will have (approximately) fs < 1
ps

over-dispersion is effectively limited by fs < max
(

1
1−ps

, 1
ps

)

with this modeling. Although technically the scale-factor cannot exceed n, this is unlikely to be a practical
limitation. A simple log link can be used for covariate dependence; i.e., log(fs) = x⊤γ.

Given fs and ps Equation 5 can be solved for b using the R root finding function uniroot, then
Equation 4 can be solved for a leading to

λi = n

[

1 − (1 − ps)
1−b

(1 − b)

](

1−
i

n

)b

(6)

from Equation 3. This parameterization based on approximate forms for the mean and variance results in
the exact mean and scale-factor not being described perfectly by their respective link functions of the linear
predictors but by some perturbations of these. However, for the examples discussed in the next section
the effect of this on moment-based estimates is modest. The covariate coefficients β and γ describing the
mean and scale-factor can be estimated by maximum likelihood from data y1, y2, . . . , yk using the likelihood
py1

, py2
, . . . , pyk

from the probabilities in Equation 1. Alternatively, the parameter b in Equation 6 can be
estimated as a nuisance parameter if there is no interest in modeling the scale-factor. Exact calculation of
the mean, variance and scale-factor can be done using the probabilities in Equation 1.

2.2 Models other than EPPMs

Two often used distributional models utilizing two parameters, rather than one as with the binomial, for
describing over-dispersed binary data are the correlated binomial and beta binomial distributions. These
two relax different parts of the identical, independently distributed (iid) assumption, with the former
allowing the outcomes of successive Bernoulli trials to be correlated; and the latter being a mixed binomial
distribution where the success probability ps is not fixed over the sequence of trials but varies according to
a beta distribution. As with the EPPM, both the mean and scale-factor (or variance) can be formulated in
terms of associated covariates. This means that all three distributions can be placed within the generalized
linear model (GLM) framework, either as a single or double GLM. Sáez-Castillo et al. (2023) describes a
double GLM model for count data.

The mean and scale-factor of a simple correlated binomial with correlation ρ between the outcomes of
any two trials are nps and 1 + ρ(n−1), with probability mass function as in Kupper and Haseman (1978)

Prob(X=x) =





n

x



 pxs (1− ps)
n−x

{

1 +
ρ

2ps(1− ps)

[

(x− nps)
2 + x(2ps − 1) − np2s

]

}

.

The beta binomial distribution can be parameterized as in Smith (1983) with probability mass function

Prob(X=x) =





n

x





x−1
∏

r=0

(µ + rθ)

n−x−1
∏

r=0

(1 − µ + rθ)

n−1
∏

r=0

(1 + rθ)

,

with mean µ (= nps) and scale-factor 1 + θ
(1+θ) (n− 1) (Hughes and Madden, 1995). Both these distri-

butions do admit some modest levels of under-dispersion. Bounds on the scale-factor can be determined
from those given for ρ in Kupper and Haseman (1978) for the correlated binomial, and for θ in Prentice
(1986) for the beta binomial.

The EPPM generalization of the binomial distribution complements these two, and potentially other
distributions, as it allows quite general levels of under-dispersion but only modest levels of over-dispersion.
Therefore a distribution formed by a combination of beta binomial for fs > 1 and EPPM extended binomial
for fs ≤ 1 will allow for the full range of under- and over-dispersion in observed data. With the mean and
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scale-factor being dependent on covariates as discussed in the previous sub-section, continuity is assured
by both the EPPM extended binomial and the two other distributions reducing to the simple binomial
distribution for fs = 1. Standard likelihood methods would apply as fs = 1 is not on the boundary of the
parameter spaces of either of the components forming the residual distribution.

3 Description of the functions

Models with two covariate dependencies linked to ps and fs are developed using Equations 1 and 3. The
link function between ps and the linear predictor of covariates is either logit, probit, complementary log-
log, cauchit, log, loglog, double exponential, double reciprocal, power logit, or negative complementary log.
The last four of these link functions are not available in glm or betareg. References to them are Ford et al.
(1992), Gaudard et al. (1993), and Tibshirani and Ciampi (1983). Only a log link function is used for the
scale-factor fs. Fitting to data is done using maximum likelihood, the optimization method used being
one of two of the options available in the R function optim, i.e., the simplex method of Nelder and Mead
(1967) ("Nelder-Mead"), or the "BFGS" method which uses first derivatives. The first derivatives used in
the latter method, and in calculating the hessian matrix, are numerical ones obtained using the gradient
function of the R package numderiv of Gilbert and Varadhan (2019).

The R package Formula of Zeileis and Croissant (2010) is used to extract model information from
the formula input to BinaryEPPM. Offsets are included in the formulae specifications. To avoid repeated
extractions within subsidiary functions, extraction of model information such as covariates.matrix.mean
is only done once. As iteration is involved in the model fitting, initial estimates of the parameters are
needed. These can be provided in the vector initial with a default, if unset, of initial estimates being
produced within BinaryEPPM by fitting a binomial model using glm. The matrix exponential function
used for calculating the probabilities of Equation 1 is from the package expm of Maechler et al. (2024).
Three pseudo R-squared are available, the first, is the square of the correlation between the observed and
predicted GLM linear predictor values; the other two are commonly used in logistic regression, relevant
references being Cox and Snell (1989) and Nagelkerke (1991).

The arguments of BinaryEPPM are

BinaryEPPM(formula, data, subset = NULL, na.action = NULL,

weights = NULL, model.type = "p only",

model.name = "EPPM extended binomial", link = "cloglog",

initial = NULL, method = "Nelder-Mead",

pseudo.r.squared = "square of correlation", control = NULL)

with details of the arguments given in Table 1 together with defaults if any.
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Argument Description Default
formula paired formulae as in

Zeileis and Croissant (2010)
data a data.frame or a list

subset subsetting commands NULL

na.action action taken for NAs in data NULL

weights vector if data is a data.frame vector of ones
a list if data is a list list of lists of ones
attributes normalization, norm.to.n both NULL

model.type "p only" "p only"

(only ps in Equation 4 modeled)
"p and scale-factor"

(ps and fs modeled)
model.name "binomial" ("p only") "EPPM extended binomial"

"beta binomial"

"correlated binomial"

"EPPM extended binomial"

link the GLM link function for ps "cloglog"

"logit" "probit" "cloglog"

"cauchit" "log" "loglog"

"doubexp" "doubrecip"

"negcomplog"

"powerlogit" attribute "power" "power" = 1
initial parameter initial values vector glm fit of binomial
method "Nelder-Mead" "Nelder-Mead"

"BFGS" attribute "grad.method" attribute "simple"
which is "simple" or "Richardson"

pseudo.r.squared "square of correlation" "square of correlation"

"R squared"

"max-rescaled R squared"

control list of control parameters see text for more detail

Table 1: Arguments of BinaryEPPM.

The dependent variable is either a column, or columns, where data is a data.frame; or a list within
data where it is a list. For the latter, the response variable list is one of frequency distributions. Several
of the example data sets are available in both forms to illustrate how to deploy them. Table 2 gives details
of the fitted model object of class ‘BinaryEPPM’ returned. It is a list similar to those of objects with classes
‘glm’ and ‘betareg’ returned by calls to glm and betareg.
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Component Description
data.type data.frame or list
list.data data as a list of frequency distributions
call the call to BinaryEPPM

formula the formula input
model.type "p only" or "p and scale-factor"

model.name as in Table 1 according to value of model.type
link the GLM link function for ps
covariates.matrix.p matrix of covariates for ps
covariates.matrix.scalef matrix of covariates for scale-factor
offset.p offset vector for ps
offset.scalef offset vector for scale-factor
coefficients the estimated coefficients
loglik the final log likelihood
vcov the estimated variance/covariance matrix
n needed for lmtest the number of observations
nobs needed for stats the number of observations
df.null null model degrees of freedom
df.residual residual degrees of freedom
vnmax a vector of number of trials
weights a vector of weights
converged whether converged
iterations number of iterations
method "Nelder-Mead" or "BFGS"
pseudo.r.squared pseudo R squared value
start initial estimates input
optim final estimates of coefficients
control control parameters of optim
fitted.values fitted values of ps
y observed values of ps
terms model terms

Table 2: Components of object returned by BinaryEPPM.
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Function Description
print a simple printed display
summary standard regression output (coefficient estimates, standard

errors, partial Wald tests); returns an object of class
‘summary.BinaryEPPM’ containing the relevant summary
statistics (which has a print() method)

coef() extract coefficients of model (full, mean, or precision
components), a single vector of all coefficients by default

vcov() associated covariance matrix (with matching names)
predict() predictions (response, linear predictor ps, linear

predictor scale-factor, ps, scale-factor, scale-factor limits, mean,
variance, distribution probabilities, distribution parameters)
for existing and new data

fitted() fitted means for observed data
residuals() extract residuals (deviance, Pearson, response, standardized

deviance, standardized Pearson residuals), defaulting to
standardized Pearson residuals

terms() extract terms of model components
model.matrix() extract model matrix of model components
model.frame() extract full original model frame
logLik() extract fitted log-likelihood
plot() diagnostic plots of residuals, predictions, leverages, etc.
hatvalues() hat values (diagonal of hat matrix)
cooks.distance() Cook’s distance
gleverage() generalized leverage
waldtest() Wald tests of model parameters
coeftest() partial Wald tests of coefficients
lrtest() likelihood ratio tests of model parameters
AIC() compute information criteria (AIC, BIC, . . . )

Table 3: Generic functions for use with objects of class ‘BinaryEPPM’.

Table 3 gives details of a set of S3 generic extractor functions for objects of class ’BinaryEPPM’. The set
is similar to that of Table 1 of Cribari-Neto and Zeileis (2010) related to package betareg, except there are
no functions estfun, bread or linear.hypothesis. Also, gleverage and cooks.distance are variants
of the functions glm.diag and glm.diag.plots from package boot (Canty and Ripley, 2024) rather than
betareg. The first four blocks refer to functions specific to BinaryEPPM. The last block contains generic
functions, the default versions of which work because of the information supplied by the functions of the
first four blocks. Package lmtest (Zeileis and Hothorn, 2002) needs to be loaded to use coeftest and
lrtest. Function AIC comes from stats which is a default package loaded when R is started. In Table 2
both n and nobs are included, so that functions from both packages lmtest and stats can use the object
returned. The limits on the values of θ (beta binomial) or ρ (correlated binomial) can be obtained from
function predict with argument type = "distribution.parameters". For given values of n and ps
tables of limits can be constructed using the subsidiary function Model.BCBinProb of BinaryEPPM.
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4 Examples

To run the examples as shown the package lmtest needs to be installed and loaded.

4.1 Data of Author word counts

These data of the number of articles in five and ten word samples are from Bailey (1990), and are
referred to in Sellers et al. (2017) related to under-dispersion. Both forms of the data are available
with data("wordcount.grouped", package = "BinaryEPPM") and data("wordcount.case", package

= "BinaryEPPM") representing list and data.frame respectively. Sellers et al. (2017) considers only
the Macaulay data of the ten word sample. The following code extracts these data in frequency dis-
tribution form from data("wordcount.grouped", package = "BinaryEPPM"), fits the EPPM extended
binomial distribution to the ""p and scale-factor"" model; and prints out estimates, predictions and
log-likelihood.

> Macaulay10.grouped <- list(number.words = wordcount.grouped$number.words[2])

> output.fn <- BinaryEPPM(data = Macaulay10.grouped, number.words ~

+ 1 | 1, link = "logit", model.type = "p and scale-factor",

+ model.name = "EPPM extended binomial")

> print(data.frame(mean = predict(output.fn, type = "mean"),

+ variance = predict(output.fn, type = "variance"), p = predict(output.fn,

+ type = "p"), scale.factor = predict(output.fn, type = "scale.factor"),

+ lower = c(predict(output.fn, type = "scale.factor.limits")[["lower"]]),

+ upper = c(predict(output.fn, type = "scale.factor.limits")[["upper"]])),

+ row.names = FALSE)

mean variance p scale.factor lower upper

1.049696 0.6475566 0.1049696 0.6892495 0 1.112236

> cat("\n", "log-likelihood ", logLik(output.fn), "\n")

log-likelihood -117.6615

The resulting log-likelihood is very close to those reported in Table 3 of Sellers et al. (2017) for the binomial
variant of the sum of Conway-Maxwell-Poissons (sCMP) class of distributions. This binomial variant is
the two parameter CMP distribution when a third (integer) parameter m = 1. The reported values are
−118.319, −117.327, −117.331, −118.521 for m = 1, 2, 3, 4 respectively.

A saturated model analysis of the complete data set in frequency distribution form can be performed,
and estimates, predictions and log-likelihood printed.

> output.fn <- BinaryEPPM(data = wordcount.grouped, number.words ~

+ 1 + author + fsize + author * fsize | 1 + author + fsize +

+ author * fsize, model.type = "p and scale-factor",

+ model.name = "EPPM extended binomial")

> print(data.frame(author = wordcount.grouped$author, size = wordcount.grouped$fsize,

+ mean = predict(output.fn, type = "mean"), variance = predict(output.fn,

+ type = "variance"), p = predict(output.fn, type = "p"),

+ scale.factor = predict(output.fn, type = "scale.factor"),

+ lower = c(predict(output.fn, type = "scale.factor.limits")[["lower"]]),

+ upper = c(predict(output.fn, type = "scale.factor.limits")[["upper"]])),

+ row.names = FALSE)

author size mean variance p scale.factor lower upper

Macaulay 5 0.6105219 0.3569735 0.1221044 0.6660270 0 1.123554

Macaulay 10 1.0507198 0.6526806 0.1050720 0.6941058 0 1.112510
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Chesterton 5 0.5841647 0.3282146 0.1168329 0.6361796 0 1.113552

Chesterton 10 1.0899548 0.5359336 0.1089955 0.5518519 0 1.112098

> cat("\n", "log-likelihood ", logLik(output.fn), "\n")

log-likelihood -340.8471

Beta and correlated binomials can be fitted for comparison.

> output.fn.one <- update(output.fn, model.name = "beta binomial")

> print(data.frame(author = wordcount.grouped$author, size = wordcount.grouped$fsize,

+ mean = predict(output.fn.one, type = "mean"), variance = predict(output.fn.one,

+ type = "variance"), p = predict(output.fn.one, type = "p"),

+ scale.factor = predict(output.fn.one, type = "scale.factor"),

+ lower = c(predict(output.fn.one, type = "scale.factor.limits")[["lower"]]),

+ upper = c(predict(output.fn.one, type = "scale.factor.limits")[["upper"]])),

+ row.names = FALSE)

author size mean variance p scale.factor lower upper

Macaulay 5 0.6121484 0.4693571 0.1224297 0.8737047 0.8737047 5

Macaulay 10 1.0513222 0.8407176 0.1051322 0.8936252 0.8936252 10

Chesterton 5 0.5880414 0.4560093 0.1176083 0.8788290 0.8788290 5

Chesterton 10 1.0882283 0.8629756 0.1088228 0.8898452 0.8898452 10

> cat("\n", "log-likelihood ", logLik(output.fn.one), "\n")

log-likelihood -351.7929

> output.fn.two <- update(output.fn, model.name = "correlated binomial")

> print(data.frame(author = wordcount.grouped$author, size = wordcount.grouped$fsize,

+ mean = predict(output.fn.two, type = "mean"), variance = predict(output.fn.two,

+ type = "variance"), p = predict(output.fn.two, type = "p"),

+ scale.factor = predict(output.fn.two, type = "scale.factor"),

+ lower = c(predict(output.fn.two, type = "scale.factor.limits")[["lower"]]),

+ upper = c(predict(output.fn.two, type = "scale.factor.limits")[["upper"]])),

+ row.names = FALSE)

author size mean variance p scale.factor lower upper

Macaulay 5 0.6118394 0.5070221 0.1223679 0.9442282 0.9442282 2.264453

Macaulay 10 1.0504936 0.9180692 0.1050494 0.9765240 0.9765240 2.885086

Chesterton 5 0.5875523 0.4908914 0.1175105 0.9467368 0.9467368 2.249589

Chesterton 10 1.0868891 0.9451298 0.1086889 0.9756115 0.9756115 2.952252

> cat("\n", "log-likelihood ", logLik(output.fn.two), "\n")

log-likelihood -356.9905

The results for the beta and correlated binomials show that the lower limits for the scale-factor have
been reached and that the EPPM extended binomial is a better fit.

4.2 Data of number of rope spores in a dilution series of potato

flour

These dilution series data originate from Finney (1971), where a number of samples (n = 5) at each
of a series of dilutions of a suspension of potato flour were examined for rope spores. The data are
given in Faddy and Smith (2008), Faddy and Smith (2012). Both forms of the data are available with
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data("ropespores.grouped", package = "BinaryEPPM") and data("ropespores.case", package =

"BinaryEPPM") representing list and data.frame respectively. All models fitted have the (approximate)
ps modeled according to the series of dilutions using a cloglog link function

ps =
mean

n
≈ (1 − exp(− exp(β0 − log(dilution)))) .

The preliminary analysis of these data in Faddy and Smith (2008) was based on a binomial distribution
from Equation 2 with log(a) = β0 − log(dilution), corresponding to the parameter a being proportional to
the reciprocal of the dilution, and log(dilution) an offset. Here, 1 − exp(−a) is the probability of a single
sample being fertile for rope spores and exp(−a) the probability of a single sample being sterile. Fitting a
binomial followed by EPPM extended binomial Equation 3 with constant b using the data.frame form of
input

> output.fn <- BinaryEPPM(data = ropespores.case, number.spores/number.tested ~

+ 1 + offset(logdilution), model.name = "binomial")

> output.fn.one <- update(output.fn, model.name = "EPPM extended binomial")

> summary(output.fn.one)

Dependent variable a vector of numerator / denominator.

Call:

BinaryEPPM(formula = number.spores/number.tested ~ 1 + offset(logdilution),

data = ropespores.case, model.name = "EPPM extended binomial")

Model type : p only

Model name : EPPM extended binomial

Link p : cloglog

non zero offsets in linear predictors

Coefficients (model for p with cloglog link)

Coefficient of EPPM b has 1 subtracted from it

so the test is against 1 i.e., a binomial.

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.86624 0.14352 13.0036 1.16e-06 ***

EPPM b 8.49031 6.39010 1.3287 0.2206

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Type of estimator: ML (maximum likelihood)

Log-likelihood: -3.244071 on 2 Df

Pseudo R-squared: 0.892522 type square of correlation

Number of iterations: 67 of optim method Nelder-Mead

return code 0 successful

Likelihood ratio and Wald tests can be performed and AIC values produced to compare the models.

> lrtest(output.fn, output.fn.one)

Likelihood ratio test

Model 1: number.spores/number.tested ~ 1 + offset(logdilution)

Model 2: number.spores/number.tested ~ 1 + offset(logdilution)

#Df LogLik Df Chisq Pr(>Chisq)

1 1 -5.5942

2 2 -3.2441 1 4.7003 0.03016 *

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

> waldtest(output.fn, output.fn.one)

Wald test

Model 1: number.spores/number.tested ~ 1 + offset(logdilution)

Model 2: number.spores/number.tested ~ 1 + offset(logdilution)

Res.Df Df Chisq Pr(>Chisq)

1 9

2 8 1 2.2057 0.1375

> AIC(output.fn, output.fn.one)

df AIC

output.fn 1 13.18843

output.fn.one 2 10.48814

The EPPM extended binomial model with constant b is superior to the binomial with significant under-
dispersion apparent according to the likelihood ratio test, although not according to the Wald test due to
considerable asymmetry in the profile log-likelihood as a function of this parameter. The estimates of the
other parameter β0 are rather different due to the formulation of the EPPM extended binomial model in
terms of the approximate mean (Equation 4), but this has only a small effect on the actual means of the
fitted model.

Residual plots as in Cribari-Neto and Zeileis (2010) can be produced as displayed in Figure 1.

> layout(matrix(c(1:6), byrow = TRUE, ncol = 2))

> plot(output.fn.one, which = 1, type = "response")

> plot(output.fn.one, which = 2, type = "pearson")

> plot(output.fn.one, which = 3, type = "spearson")

> plot(output.fn.one, which = 4, type = "likelihood")

> plot(output.fn.one, which = 5, type = "deviance")

> plot(output.fn.one, which = 6, type = "sdeviance")

The complementary log–log link function is asymmetric about the 50% (ED50) value compared to the
symmetric logit link function. To assess how a more general asymmetric link function might perform, the
profile likelihood can be optimized for a power logit link function.

> output.fn.two <- update(output.fn.one, link = "powerlogit")

> Results <- optim(par = 1, fn = function(par, input.data,

+ ...) {

+ local.link <- "powerlogit"

+ attr(local.link, which = "power") <- par

+ slogL <- update(output.fn.two, link = local.link)$loglik

+ return(slogL)

+ }, input.data = ropespores.case, method = "Brent", lower = 1/3,

+ upper = 3, control = list(fnscale = -1), hessian = TRUE)

> se <- sqrt(-solve(Results$hessian)[1, 1])

> X2 <- round(-2 * (output.fn.one$loglik - Results$value),

+ digits = 4)

> cat(paste("\n", "power", round(Results$par, digits = 4),

+ "se", round(sqrt(-solve(Results$hessian)[1, 1]), digits = 4),

+ "log likelihood", round(Results$value, digits = 4), "\n",

+ sep = " "))

power 2.5677 se 2.723 log likelihood -2.5956
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Figure 1: Linear predictor plots.

The difference in log-likelihoods here is insufficient for AIC to favor a model with a power logit link over
one with the complementary log-log link.

4.3 Frequency of sex combinations in litters of pigs

The title of Brooks et al. (1991) suggests that the data show under-dispersion relative to the binomial
distribution. Of the three data sets mentioned, only those for the Yorkshire breed will be used here. The
fitting of a binomial distribution to these data with litter size treated as a factor with nine levels suggests
that such a model is a satisfactory fit.

> output.fn <- BinaryEPPM(data = Yorkshires.litters, model.name = "binomial",

+ number.success ~ 0 + fsize)

> cat(paste("\n", "generalized Pearson goodness of fit statistic",

+ round(sum(residuals(output.fn, type = "pearson")^2),

+ digits = 4), "on", sum(sapply(1:length(Yorkshires.litters$number.success),

+ function(i) {

+ sum(c(Yorkshires.litters$number.success[[i]]))

+ })) - length(attr(Yorkshires.litters$fsize, which = "levels")),

+ "df", "\n", sep = " "))

generalized Pearson goodness of fit statistic 2614.2181 on 2602 df
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Fitting binomial and EPPM extended binomial models with the linear predictor associated with probability
ps linearly dependent on litter size as a variable and a constant scale-factor fs would support this. However,
there is an improvement in fit by allowing the linear predictor associated with the scale-factor fs to also
depend on litter size.

> output.fn <- BinaryEPPM(data = Yorkshires.litters, model.type = "p only",

+ model.name = "binomial", number.success ~ 1 + vsize)

> output.fn.one <- update(output.fn, model.type = "p and scale-factor",

+ model.name = "EPPM extended binomial", number.success ~

+ 1 + vsize | 1)

> output.fn.two <- update(output.fn.one, number.success ~ 1 +

+ vsize | 1 + vsize)

> lrtest(output.fn, output.fn.one, output.fn.two)

Likelihood ratio test

Model 1: number.success ~ 1 + vsize

Model 2: number.success ~ (1 + vsize | 1)

Model 3: number.success ~ (1 + vsize | 1 + vsize)

#Df LogLik Df Chisq Pr(>Chisq)

1 2 -4776.6

2 3 -4776.5 1 0.0726 0.7876

3 4 -4774.6 1 3.8115 0.0509 .

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

A data.frame of predicted summary statistics can be printed.

> print(data.frame(size = Yorkshires.litters$vsize, mean = predict(output.fn.two,

+ type = "mean"), variance = predict(output.fn.two, type = "variance"),

+ p = predict(output.fn.two, type = "p"), scale.factor = predict(output.fn.two,

+ type = "scale.factor"), lower = c(predict(output.fn.two,

+ type = "scale.factor.limits")[["lower"]]), upper = c(predict(output.fn.two,

+ type = "scale.factor.limits")[["upper"]])), row.names = FALSE)

size mean variance p scale.factor lower upper

5 2.526440 1.378628 0.5052879 1.1030256 0 2.035225

6 3.036085 1.626883 0.5060141 1.0847454 0 2.033201

7 3.544445 1.859951 0.5063493 1.0630006 0 2.031182

8 4.051727 2.078820 0.5064658 1.0395836 0 2.029168

9 4.558034 2.284360 0.5064482 1.0154399 0 2.027159

10 5.063419 2.477295 0.5063419 0.9910774 0 2.025154

11 5.567904 2.658235 0.5061731 0.9667782 0 2.023155

12 6.071499 2.827718 0.5059583 0.9427066 0 2.021160

13 6.574205 2.986238 0.5057081 0.9189622 0 2.019169

The calculation of these exact summary statistics is done using the probabilities in Equation 1 for the
EPPM extended binomial, rather than the approximate formulae in Equations 4 and 5. The following
code uses predict to compare these approximate forms with the above predicted values of ps and fs.
Figure 2 shows plots of these where the lines represent the approximate (linear) values and the symbols
the exact (non linear) values.
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Figure 2: Linear predictor plots.

> approx.lp.p <- predict(output.fn.two, type = "linear.predictor.p")

> approx.lp.sf <- predict(output.fn.two, type = "linear.predictor.scale.factor")

> exact.lp.p <- log(-log(1 - predict(output.fn.two, type = "p")))

> exact.lp.sf <- log(predict(output.fn.two, type = "scale.factor"))

> plot(x = c(5, 13), y = c(-0.4, 0.15), xlab = "litter size",

+ ylab = "linear predictor values", type = "n")

> lines(x = Yorkshires.litters$vsize, y = approx.lp.p, lty = 1)

> points(x = Yorkshires.litters$vsize, y = exact.lp.p, pch = 1)

> lines(x = Yorkshires.litters$vsize, y = approx.lp.sf, lty = 2)

> points(x = Yorkshires.litters$vsize, y = exact.lp.sf, pch = 3)

> legend(5.1, -0.2, legend = c("log( -log(1 - p_s)", "log(f_s)"),

+ pch = c(1, 3), cex = 1)

At least for these data, the approximations are numerically close, but more importantly the exact values
show only minor perturbations from linearity. The data from the first five litters sizes show scale-factors
greater than one and the data from the last four show scale-factors less than one. The following shows how
a combined model with beta binomial for the over-dispersed litter sizes and EPPM extended binomial for
the under-dispersed litter sizes can be fitted.

> in.par <- c(output.fn.two$coefficients$p.est, output.fn.two$coefficients$scalef.est)
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> Results <- optim(par = in.par, fn = function(in.par, in.data,

+ model.names, subsets, ...) {

+ subset1 <- BinaryEPPM(data = in.data, model.type = "p and scale-factor",

+ model.name = model.names[1], subset = subsets[[1]],

+ initial = in.par, number.success ~ 1 + vsize | 1 +

+ vsize, control = list(maxit = 1))

+ subset2 <- BinaryEPPM(data = in.data, model.type = "p and scale-factor",

+ model.name = model.names[2], subset = subsets[[2]],

+ initial = in.par, number.success ~ 1 + vsize | 1 +

+ vsize, control = list(maxit = 1))

+ slogL <- logLik(subset1) + logLik(subset2)

+ attr(slogL, which = "df") <- attr(logLik(subset1), which = "df") +

+ attr(logLik(subset2), which = "df")

+ attr(slogL, which = "nobs") <- attr(logLik(subset1),

+ which = "nobs") + attr(logLik(subset2), which = "nobs")

+ return(slogL)

+ }, in.data = Yorkshires.litters, model.type = c("p and scale-factor",

+ "p and scale-factor"), model.names = c("beta binomial",

+ "EPPM extended binomial"), subsets = list(c(1:5), c(6:9)),

+ control = list(fnscale = -1), hessian = TRUE)

> cat("\n", "log-likelihood ", logLik(output.fn.two), "\n")

log-likelihood -4774.636

The resulting parameter estimates together with their standard errors can be printed.

> print(data.frame(parameters = c("intercept p", "slope p",

+ "intercept scale factor", "slope scale factor"), Results$par,

+ se = c(sqrt(diag(solve(Results$hessian))))), row.names = FALSE)

parameters Results.par se

intercept p -0.3443024694 0.015661870

slope p -0.0005205837 0.001835825

intercept scale factor 0.2083432559 0.076138072

slope scale factor -0.0220887354 0.008843641

A data.frame of predicted summary statistics can be printed.

> first.subset <- BinaryEPPM(data = Yorkshires.litters, subset = 1:5,

+ model.type = "p and scale-factor", model.name = "beta binomial",

+ number.success ~ 1 + vsize | 1 + vsize, initial = Results$par,

+ control = list(maxit = 1))

> second.subset <- BinaryEPPM(data = Yorkshires.litters, subset = 6:9,

+ model.type = "p and scale-factor", model.name = "EPPM extended binomial",

+ number.success ~ 1 + vsize | 1 + vsize, initial = Results$par,

+ control = list(maxit = 1))

> print(data.frame(size = Yorkshires.litters$vsize, mean = c(predict(first.subset,

+ type = "mean"), predict(second.subset, type = "mean")),

+ variance = c(predict(first.subset, type = "variance"),

+ predict(second.subset, type = "variance")), p = c(predict(first.subset,

+ type = "p"), predict(second.subset, type = "p")),

+ scale.factor = c(predict(first.subset, type = "scale.factor"),
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+ predict(second.subset, type = "scale.factor")), lower = c(predict(first.subset,

+ type = "scale.factor.limits")[["lower"]], predict(second.subset,

+ type = "scale.factor.limits")[["lower"]]), upper = c(predict(first.subset,

+ type = "scale.factor.limits")[["upper"]], predict(second.subset,

+ type = "scale.factor.limits")[["upper"]])), row.names = FALSE)

size mean variance p scale.factor lower upper

5 2.534078 1.378309 0.5068156 1.1028520 0.4374562 5.000000

6 3.039805 1.617853 0.5066342 1.0787585 0.4526227 6.000000

7 3.545169 1.846277 0.5064527 1.0551913 0.4622157 7.000000

8 4.050170 2.063953 0.5062713 1.0321390 0.4688047 8.000000

9 4.554809 2.271241 0.5060899 1.0095903 0.4735900 9.000000

10 5.060765 2.471189 0.5060765 0.9886216 0.0000000 2.023917

11 5.567677 2.663229 0.5061524 0.9685937 0.0000000 2.023174

12 6.074282 2.845601 0.5061901 0.9486791 0.0000000 2.022432

13 6.580583 3.018647 0.5061987 0.9289574 0.0000000 2.021691

The predicted ps and scale factor with its limits for a litter size of 14 can be produced from the fitted
model, illustrating use of the newdata argument of predict.

> newdata <- data.frame(vsize = 14, vnmax = c(14), mean.p = Results$par[[1]],

+ mean.scalef = Results$par[[2]])

> print(data.frame(size = newdata$vsize, p = predict(second.subset,

+ newdata, type = "p"), scale.factor = predict(second.subset,

+ newdata, type = "scale.factor"), lower = predict(second.subset,

+ newdata = newdata, type = "scale.factor.limits")[["lower"]],

+ upper = predict(second.subset, newdata = newdata, type = "scale.factor.limits")[["upper"]]),

+ row.names = FALSE)

size p scale.factor lower upper

14 0.5061843 0.90948 0 2.025047

5 Concluding remarks

Although this vignette is focused on under-dispersion, the package BinaryEPPM can be used to fit EPPMs
to grouped binary data exhibiting both under- and/or over-dispersion relative to the binomial distribution.
A variety of covariate dependencies and data structures are covered in examples that provide illustrations of
the ways in which BinaryEPPM can be used in the analysis of grouped binary data, particularly those show-
ing under-dispersion. It complements the similar modeling in Smith and Faddy (2016) of count data using
EPPMs. Package CountsEPPM (Smith and Faddy, 2024) is available on the Comprehensive R Archive
Network (CRAN) as a contributed package at https://CRAN.R-project.org/package=CountsEPPM.
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