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HMMRel-package HMMRel - Hidden Markov Models for Reliablity and Maintenance

Description

Reliability Analysis and Maintenance Optimization using Hidden Markov Models (HMM).

Details

Package: HMMRel
Type: Package
Version: 1.0
Date: 2024-11-11
License: GPL version 2 or later
Maintainer: M.L. Gamiz <mgamiz@ugr.es>
URL: http://wpd.ugr.es/~reliastat

Author(s)

M.L. Gamiz, N.Limnios, and M.C. Segovia-Garcia

References

Gamiz, M.L., Limnios, N., Segovia-Garcia, M.C. (2023). Hidden Markov models in reliability and
maintenance. European Journal of Operational Research, 304(3), 1242-1255.

http://wpd.ugr.es/~reliastat
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cost.cspc Maintenance Policy based on Critical State Probability Critera.

Description

Preventive maintenance based on Critical State Probability Criteria (CSPC).

Usage

cost.cspc(prob,hmmR,n.up1,cost.C,cost.P,t.max)

Arguments

prob A real number in the interval (0,1).

hmmR A hidden Markov Model.

n.up1 An integer value for indicating the total number of optimal performance states
of the hidden MC.

cost.C A positive real number denoting the cost value in monetary units incurred by a
corrective maintenance action.

cost.P A positive real number denoting the cost value in monetary units incurred by a
preventive maintenance action.

t.max A time value for the maximum time the system will be in use. After that time
the system will not operate anymore.

Details

Preventive maintenance policies based on critical states probability critera (CSPC) is considered.
Roughly speaking, a preventive maintenance action is carried out once the system enters a subset
of operational states that are considered critical in some sense. The subset of operative states up
is in turn split into two subsets: optimal states or up1 and operative but critical states or up2,
where up=up1 ∪ up2. For a given probability value (prob) this function first calculates the optimal
inspection time

t.insp = min{t > 0 : Pr(X(t) ∈ up2, X(u) ∈ up1,∀u ≤ t)}.

The system is inspected every t.insp time-units. At the time of inspection, any of three situations
can be found:

1. the system is in failure, then the system is returned to operational conditions (up1), and a cost
of cost.C monetary-units is implied;

2. the system is in a state of up2, then a preventive maintenance action is carried out, returning
the system to a state in up1 and implying a cost of cost.P monetary-units; and

3. the system is found in a state of up1, then no maintenance action is carried out and there is no
associated cost.
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Value

time.insp The time at which preventive maintenance is carried out.

t.max The maximum time that the system is being used.

n.insp The total number of inspections that are carried out during the system lifetime,
i.e. in the interval (0, t.max).

total.cost The total cost incurred by all maintenance actions (corrective and preventive)
developed in the system.

Author(s)

M.L. Gamiz, N. Limnios, and M.C. Segovia-Garcia (2024)

References

Gamiz, M.L., Limnios, N., and Segovia-Garcia, M.C. (2023). Hidden Markov models in reliability
and maintenance. European Journal of Operational Research, 304(3), 1242-1255.

See Also

See cost.wspc for the implementation of the WSPC algorithm for maintenance policy.

Examples

model<-'other'
rate<-p<-NA
P<-matrix(c(8,2,1,0,6,4,6,2,2)/10,3,3,byrow=TRUE)
M<-matrix(c(7,3,0,4,3,3,0,4,6)/10,3,3,byrow=TRUE)
Nx<-3; Ny<-3
n.up<-2; n.green<-2
alpha<-c(1,0,0)
hmm1<-def.hmmR(model=model,rate=NA,p=NA,alpha=alpha,P=P,M=M,Nx=Nx,Ny=Ny,n.up=n.up,n.green=n.green)
prob<-0.8;
n.up1<-n.green1<-1;cost.C<-10;cost.P<-1;t.max<-50
cost1<-cost.cspc(prob=prob,hmmR=hmm1,n.up1=n.up1,cost.C=cost.C,cost.P=cost.P,t.max=t.max)
cost1
#
v.prob<-seq(0.1,0.99,length=100)
v.cost1<-inspection.time<-double(100)
for(i in 1:100)
{cost<-cost.cspc(prob=v.prob[i],hmmR=hmm1,n.up1=n.up1,

cost.C=cost.C,cost.P=cost.P,t.max=t.max)
v.cost1[i]<-cost$total.cost
inspection.time[i]<-cost$time.insp
}
oldpar <- par(mar = c(5, 5, 10, 10))
plot(v.prob,v.cost1,type='s',main='CSPC Algorithm for Maintenance Policy',
xlab='Probability of critical state',
ylab='Cost of maintenance')
grid()
par(oldpar)
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cost.wcspc Maintenance Policy based on Warning Signal Probability Criteria.

Description

Preventive maintenance based on Warning Signal Probability Criteria (CSPC).

Usage

cost.wspc(prob,hmmR,n.up1,n.green1,cost.C,cost.P,t.max)

Arguments

prob A real number in the interval (0,1).
hmmR A hidden Markov Model.
n.up1 An integer value for indicating the total number of optimal performance states

of the hidden MC.
n.green1 An integer value for indicating the total number of safe signals. A safe signal

indicates an optimal system performance.
cost.C A positive real number denoting the cost value in monetary units incurred by a

corrective maintenance action.
cost.P A positive real number denoting the cost value in monetary units incurred by a

preventive maintenance action.
t.max A time value for the maximum time the system will be in use. After that time

the system will not operate anymore.

Details

Preventive maintenance policies based on Warning Signal Probability criteria (CSPC) is considered.
Roughly speaking, a preventive maintenance action is carried out at a time when the probability
that system is not occupying an optimal operational state or a warning signal is received is above a
prespecified value prob. The subset of operative states up is in turn split into two subsets: optimal
states or up1 and operative but critical states or up2, where up=up1∪up2. Similarly, the set of green
signals is split into two subsets: safe signals and warning signals. n.green1 is the size of subset
safe. For a given probability value (prob) this function first calculates the optimal inspection time

t.insp = min{t > 0 : Pr(Y (t) ∈ warning, Y (u) ∈ safe,∀u ≤ t)}.

The system is inspected every t.insp units.of time. At the time of inspection, any of three situations
can be found:

1. the system is in failure, then the system is returned to operational conditions (up1), and a cost
of cost.C monetary-units is implied;

2. the system is in a state of up2, then a preventive maintenance action is carried out, returning
the system to a state in up1 and implying a cost of cost.P monetary-units; and

3. the system is found in a state of up1, then no maintenance action is carried out and there is no
associated cost.
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Value

time.insp The time at which preventive maintenance is carried out.
t.max The maximum time that the system is being used.
n.insp The total number of inspections that are carried out during the system lifetime,

i.e. in the interval (0, t.max).
total.cost The total cost incurred by all maintenance actions (corrective and preventive)

developed in the system.

Author(s)

M.L. Gamiz, N. Limnios, and M.C. Segovia-Garcia (2024)

References

Gamiz, M.L., Limnios, N., and Segovia-Garcia, M.C. (2023). Hidden Markov models in reliability
and maintenance. European Journal of Operational Research, 304(3), 1242-1255.

See Also

See cost.cspc for the implementation of the CSPC algorithm for maintenance policy.

Examples

model<-'other'
rate<-p<-NA
P<-matrix(c(8,2,1,0,6,4,6,2,2)/10,3,3,byrow=TRUE)
M<-matrix(c(7,3,0,4,3,3,0,4,6)/10,3,3,byrow=TRUE)
Nx<-3; Ny<-3
n.up<-2; n.green<-2
alpha<-c(1,0,0)
hmm1<-def.hmmR(model=model,rate=NA,p=NA,alpha=alpha,P=P,M=M,Nx=Nx,Ny=Ny,n.up=n.up,n.green=n.green)
prob<-0.8;
n.up1<-n.green1<-1;cost.C<-10;cost.P<-5;t.max<-50
cost1<-cost.wspc(prob=prob,hmmR=hmm1,n.up1=n.up1,n.green1=n.green1,

cost.C=cost.C,cost.P=cost.P,t.max=t.max)
cost1
#
v.prob<-seq(0.1,0.99,length=100)
v.cost1<-inspection.time<-double(100)
for(i in 1:100)
{cost<-cost.wspc(prob=v.prob[i],hmmR=hmm1,n.up1=n.up1,n.green1=n.green1,
cost.C=cost.C,cost.P=cost.P,t.max=t.max)
v.cost1[i]<-cost$total.cost
#inspection.time[i]<-cost$time.insp
}
oldpar<-par(mar=c(5,5,10,10))
plot(v.prob,v.cost1,type='s',main='WSPC Algorithm for Maintenance Policy',

xlab='Probability of critical state',
ylab='Cost of maintenance')

grid()
par(oldpar)
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def.hmmR Define a HMM object for Reliability Analysis.

Description

This function creates a list with all the elements that describe a HMM in the context of Reliability
and Maintenance.

Usage

def.hmmR(model,rate,p,alpha,P,M,Nx,Ny,n.up,n.green)

Arguments

model A character string to choose which HMM model is considered. Possible values
are "KooN", "shock", "other"

rate A positive real number indicating the failure rate of one unit of the system.

p A real number in the interval (0,1) indicating the probability that the system
receives one shock during two consecutive inspections.

alpha A vector of size Nx with the initial law of the hidden Markov chain.

P A square matrix of dimension Nx with the transition probabilities between the
hidden states.

M A matrix of dimension Nx × Ny with the emission probabilities.

Nx An integer indicating the total number of states in the system. By default the
states are labelled: 1,...,Nx.

Ny An integer indicating the total number of signals received. By default the signals
are labelled: 1,...,Ny.

n.up An integer lower than Nx indicating the number of (hidden) operative states in
the system. The first n.up values in the state set denote operative states.

n.green An integer lower then Ny indicating the number of signals of good performance.
The first n.green signals are read as good performance of the system.

Details

• When model="KooN" the argument Nx is the maximum number of units in the system. There
must be K=n.up operative units for the system to function. If K=1 a parallel system is built. If
K=N a series system is built.

• When model="shock" the argument Nx is the maximum number of shocks that the system
can accumulate before breakdown.
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Value

A list with the elements of the HMM.

states A set of Nx characters or integers decribing the hidden states of the system.

signals A set of Ny characters or integers decribing the possible signals observed.

P A square matrix with Nx rows with the transition probabilities between the hid-
den states.

M A matrix of dimension Nx × Ny with the emission probabilities.

Author(s)

M.L. Gamiz, N. Limnios, and M.C. Segovia-Garcia (2024)

References

Gamiz, M.L., Limnios, N., and Segovia-Garcia, M.C. (2023). Hidden Markov models in reliability
and maintenance. European Journal of Operational Research, 304(3), 1242-1255.

See Also

See also sim.hmmR to simulate data from a given HMM.

Examples

## Define a HMM object describing a repairable system
## The system can be in one of 3 states: 2 up states and 1 down state.
## 3 different signals can be received: 2 good performance signals (green)
## and 1 signal of failure (red)
P<-matrix(c(8,2,1,0,6,4,6,2,2)/10,3,3,byrow=TRUE)
M<-matrix(c(7,3,0,4,3,3,0,4,6)/10,3,3,byrow=TRUE)
Nx<-3; Ny<-3
n.up<-2; n.green<-2
alpha<-c(1,0,0)
hmm1<-def.hmmR(model='other',rate=NA,p=NA,alpha=alpha,P=P,M=M,Nx=Nx,Ny=Ny,

n.up=n.up,n.green=n.green)
hmm1

fit.hmmR Non-parametric fitting of a HMM using the Baum-Welch algorithm.

Description

This function adapts the EM algorithm to fit the transition matrix of the hidden Markov chain as
well as the emission probability matrix of a HMM.

Usage

fit.hmmR(Y,P0,M0,alpha0,max.iter=50,epsilon=1e-9,Nx,Ny)
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Arguments

Y A sequence of observations consisting of signals of system performance.

P0 A square matrix of dimension Nx with the transition probabilities of the hidden
MC at the first iteration of the algorithm.

M0 A matrix of dimension Nx × Ny with the emission probabilities at the first step
of the algorithm.

alpha0 A vector of size Nx with the initial distribution of the hidden Markov chain at
the first iteration of the algorithm.

max.iter A integer value with the maximum number of iterations in the iterative algo-
rithm. Default value is max.ite=50.

epsilon A numeric value with the tolerance in the iterative algorithm. Default value is
epsilon=1e-9.

Nx An integer value with the maximum number of states of the hidden Markov
chain.

Ny An integer value with the maximum number of signals emitted by the system.

Details

• The argument alpha0 representing the initial distribution of the hidden MC is fixed, and
defined by the user. The argument Nx is the size of the state space of the hidden MC. As
default, the set of numbers 1,...,Nx is the state space of the hidden MC.

• Ny is the size of the alphabet of signals emitted. As default, the set of numbers 1,...,Ny is the
signal-alphabet.

• The successive iterations of the algorithm can be traced and information is accessible from the
outcome of this function.

Value

Among other information, this function provides the following values:

P A square matrix with Nx rows with the estimated transition probabilities.

M A matrix of Nx rows and Ny columns, with the estimated emission probabilities.

n.iter An integer indicating the number of iterations performed in the algorithm.

tol A numeric value with the achieved tolerance value in the algorithm.

Fm A matrix of dimension n × Nx with the estimated forward probability values at
the last iteration of the algorithm.

Bm A matrix of dimension Nx × n with the estimated forward probability values at
the last iteration of the algorithm.

AIC The estimated value of the Akaike statistics. The number of parameters to be
estimated is nparam=Nx*(Nx-1)+Nx*(Ny-1).

Author(s)

M.L. Gamiz, N. Limnios, and M.C. Segovia-Garcia (2024)
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References

Gamiz, M.L., Limnios, N., and Segovia-Garcia, M.C. (2023). Hidden Markov models in reliability
and maintenance. European Journal of Operational Research, 304(3), 1242-1255.

See Also

See def.hmmR to define an object HMM, and sim.hmmR to simulate a random path from a given
HMM object.

Examples

model<-'other'
rate<-NA
p<-NA
P<-matrix(c(0.7,0.3,1,0),2,2,byrow=TRUE)
M<-matrix(c(0.6,0.4,0,0,0,1),2,3,byrow=TRUE)
alpha<-c(1,0)
Nx<-2
Ny<-3
n.up<-1
n.green<-2
hmm0<-def.hmmR(model,rate,p,alpha,P,M,Nx,Ny,n.up,n.green)
set.seed(1969)
datos<-sim.hmmR(hmmR=hmm0,n=10)
estim<-fit.hmmR(Y=datos$Yn,P0=P,M0=M,alpha0=alpha,max.iter=50,epsilon=1e-9,Ny=3,Nx=2)
estim$P;P
estim$M;M

Rcalc.hmmR Calculate the reliability of a system based on HMM.

Description

For a given time t this function returns the value of the probability that the system does not fail in
the interval (0,t]. It gives the probability that the system survives and is still working beyond time
t.

Usage

Rcalc.hmmR(hmmR,t)

Arguments

hmmR A Hidden Markov Model.

t A value of time, it must be an integer equal or greater than 0.
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Details

The state space is split into two subsets, i.e. states=up ∪ down. The subset up contains the states of
good functioning, while the subset down contains the failure states. The signals aphabet is split into
two subsets, i.e. signals= green ∪ red. A green-signal indicates good performance of the system,
while a red-signal alerts of something wrong in the system. This function returns the probability
that the system has not entered the set of down states or any signal from the red subset of signals
has been emitted at any time before t.

Value

This function returns the probability that the system is working through a state in the up subset, and
a green signal is being received. If t=0, then the returned value is 1.

Author(s)

M.L. Gamiz, N. Limnios, and M.C. Segovia-Garcia (2024)

References

Gamiz, M. L., Limnios, N., and Segovia-Garcia, M.C. (2023). Hidden Markov models in reliability
and maintenance. European Journal of Operational Research, 304(3), 1242-1255.

See Also

See def.hmmR to define a HMM object.

Examples

model<-'other'
rate<-NA
p<-NA
P<-matrix(c(0.7,0.3,1,0),2,2,byrow=TRUE)
M<-matrix(c(0.6,0.4,0,0,0,1),2,3,byrow=TRUE)
alpha<-c(1,0)
Nx<-2
Ny<-3
n.up<-1
n.green<-2
hmm0<-def.hmmR(model=model,rate=NA,p=NA,alpha=alpha,P=P,M=M,Nx=Nx,Ny=Ny,n.up=n.up,n.green=n.green)
times<-0:30
Rt<-Rcalc.hmmR(hmmR=hmm0,t=times)
oldpar <- par(mar = c(5, 5, 10, 10))
plot(times,Rt,type='s',ylim=c(0,1),ylab='',xlab='time',main='Reliability based on HMM')
grid()
par(oldpar)
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sim.hmmR Simulate sequence of states and signals of functioning of a system
modelled by a HMM.

Description

This function simulates a sample path from a 2-dimensional HMM. It returns the hidden sequence
of states and signals. At each time, the hidden state of the system is simulated from the HMM as
well as the associated signal that informs on the system performance at that time.

Usage

sim.hmmR(hmmR,n)

Arguments

hmmR A Hidden Markov Model.

n An integer number indicating the length of the sequence of states and signals to
be simulated.

Value

The function sim.hmmR returns a list with the following information:

Xn The sequence of simulated hidden states.

Yn The sequence of observed signals.

P The transition probability matrix of the hidden Markov chain (MC).

alpha The initial distribution of the hidden MC.

M The emission probability matrix.

states The set of hidden states of the system.

signal The alphabet corresponding to the observations.

Author(s)

M.L. Gamiz, N. Limnios, and M.C. Segovia-Garcia (2024)

References

Gamiz, M.L., Limnios, N., Segovia-Garcia, M.C. (2023). Hidden Markov models in reliability and
maintenance. European Journal of Operational Research, 304(3), 1242-1255.

See Also

See def.hmmR to define a HMM object.
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Examples

## Define a HMM object describing a repairable system
P<-matrix(c(8,2,1,0,6,4,6,2,2)/10,3,3,byrow=TRUE)
M<-matrix(c(7,3,0,4,3,3,0,4,6)/10,3,3,byrow=TRUE)
hmm1<-def.hmmR(model='other',rate=NA,p=NA,alpha=c(1,0,0),P=P,M=M,Nx=3,Ny=3,n.up=2,n.green=2)
sim.hmmR(hmmR=hmm1,n=20)

Virkler25 Fatigue crack growth in materials: Virkler dataset (tests 1 to 25)

Description

The data consist of an aluminum alloy specimen that was tested to investigate fatigue crack prop-
agation. Starting from an initial crack of length 9 mm for a particular item in test, the number of
cycles for the size of the crack to reach a predetermined value was recorded successively. That is,
it is registered the number of cycles every time an increment of size 0.2 mm in length occurs. The
experiment finishes once a critical size of the crack is reached, meaning the failure of the item. The
data were first published in Virkler et al. (1979) where there were 68 specimens tested to grow the
initial crack of 9 mm to the final crack of 50 mm. The first 25 tests are included.

Format

A data frame with 26 variables:

CrackLength Length of the crack in the material.

CycleCount1 Cycle count for the first test.

CycleCount2 Cycle count for the second test.

CycleCount3 Cycle count for the third test.

CycleCount4 Cycle count for the fourth test.

CycleCount5 Cycle count for the fifth test.

CycleCount6 Cycle count for the sixth test.

CycleCount7 Cycle count for the seventh test.

CycleCount8 Cycle count for the eighth test.

CycleCount9 Cycle count for the ninth test.

CycleCount10 Cycle count for the tenth test.

CycleCount11 Cycle count for the eleventh test.

CycleCount12 Cycle count for the twelfth test.

CycleCount13 Cycle count for the thirteenth test.

CycleCount14 Cycle count for the fourteenth test.

CycleCount15 Cycle count for the fifteenth test.

CycleCount16 Cycle count for the sixteenth test.

CycleCount17 Cycle count for the seventeenth test.
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CycleCount18 Cycle count for the eighteenth test.

CycleCount19 Cycle count for the nineteenth test.

CycleCount20 Cycle count for the twentieth test.

CycleCount21 Cycle count for the twenty-first test.

CycleCount22 Cycle count for the twenty-second test.

CycleCount23 Cycle count for the twenty-third test.

CycleCount24 Cycle count for the twenty-fourth test.

CycleCount25 Cycle count for the twenty-fifth test.

References

Virkler, D. A., Hillberry, B. M., and Goel, P. K. (1979). The statistical nature of fatigue crack
propagation. Journal of Engineering Materials and Technology, 101 , 148–153 .

Examples

data(Virkler25)
i<-1 ## choose specimen number 1
ti<-Virkler25[,(i+1)]/10000 ## cycles at which the cracksize increases 0.2 units.
yt<-Virkler25[,1] ##
### the system is observed every 2000 cycles (0.2 unit times)
### observations:
t.obs<-seq(0,max(ti),by=0.2)
yi<-approx(x=ti,y=yt,xout=t.obs,method='linear',rule=2)$y
yi<-diff(yi)
#discretize the observations:
yi<-kmeans(yi,4)$cluster ## consider an alphabet of 4 signals
Nx<-2; # consider 2 hidden states
Ny<-4
alpha0<-c(1,0)
estim<-fit.hmmR(Y=yi,P0=NA,M0=NA,alpha0=alpha0,max.iter=50,epsilon=1e-9,Nx=Nx,Ny=Ny)
estim$P
estim$M
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