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ica.elm_forecast Forecasting from ICA based ELM model

Description

Forecasts are generated recursively from a trained Extreme Learning Machine built using Indepen-
dent Component Analysis.

Usage

ica.elm_forecast(ica.elm_model, h = 1)

Arguments

ica.elm_model A trained ICA based ELM model.

h Number of periods for forecasting. Defaults to one-step ahead forecast.

Value

Vector of point forecasts.

See Also

ica.elm_train() for training an ICA based ELM model.
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Examples

train_set <- head(price, 12*12)
test_set <- tail(price, 12)
ica.model <- ica.elm_train(train_data = train_set, lags = 12)
y_hat <- ica.elm_forecast(ica.elm_model = ica.model, h = length(test_set))
# Evaluation of the forecasts
if(require("forecast")) forecast::accuracy(y_hat, test_set)

ica.elm_train Training of ICA based ELM model for time series forecasting

Description

An Extreme Learning Machine is trained by utilizing the concept of Independent Component Anal-
ysis.

Usage

ica.elm_train(train_data, lags, comps = lags, bias = TRUE, actfun = "sig")

Arguments

train_data A univariate time series data.

lags Number of lags to be considered.

comps Number of independent components to be considered. Corresponds to number
of hidden nodes. Defaults to maximum value, i.e., lags.

bias Whether to include bias term while computing output weights. Defaults to TRUE.

actfun Activation function for the hidden layer. Defaults to sig. See Activation functions.

Details

An Extreme Learning Machine (ELM) is trained wherein the weights connecting the input layer and
hidden layer are obtained using Independent Component Analysis (ICA), instead of being chosen
randomly. The number of hidden nodes is determined by the number of independent components.

Value

A list containing the trained ICA-ELM model with the following components.

inp_weights Weights connecting the input layer to hidden layer, obtained from the unmixing
matrix W of ICA. The columns represent the hidden nodes while rows represent
input nodes.

out_weights Weights connecting the hidden layer to output layer.

fitted.values Fitted values of the model.

residuals Residuals of the model.
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h.out A data frame containing the hidden layer outputs (activation function applied)
with columns representing hidden nodes and rows representing observations.

data The univariate ts data used for training the model.

lags Number of lags used during training.

comps Number of independent components considered for training. It determines the
number of hidden nodes.

bias Whether bias node was included during training.

actfun Activation function for the hidden layer. See Activation functions.

Activation functions

The activation function for the hidden layer must be one of the following.

sig Sigmoid function: (1 + e−x)−1

radbas Radial basis function: e−x2

hardlim Hard-limit function:

{
1, if x ≥ 0

0, if x < 0

hardlims Symmetric hard-limit function:

{
1, if x ≥ 0

−1, if x < 0

satlins Symmetric saturating linear function:


1, if x ≥ 1

x, if − 1 < x < 1

−1, if x ≤ −1

tansig Tan-sigmoid function: 2(1 + e−2x)−1 − 1

tribas Triangular basis function:

{
1− |x|, if − 1 ≤ x ≤ 1

0, otherwise

poslin Postive linear function:

{
x, if x ≥ 0

0, otherwise

References

Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications.
Neurocomputing, 70(1-3), 489-501. doi:10.1016/j.neucom.2005.12.126.

Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis.
IEEE transactions on Neural Networks, 10(3), 626-634. doi:10.1109/72.761722.

See Also

ica.elm_forecast() for forecasting from trained ICA based ELM model.

Examples

train_set <- head(price, 12*12)
ica.model <- ica.elm_train(train_data = train_set, lags = 12)

doi:10.1016/j.neucom.2005.12.126
doi:10.1109/72.761722
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pca.elm_forecast Forecasting from PCA based ELM model

Description

Forecasts are generated recursively from a trained Extreme Learning Machine built using Principal
Component Analysis.

Usage

pca.elm_forecast(pca.elm_model, h = 1)

Arguments

pca.elm_model A trained PCA based ELM model.

h Number of periods for forecasting. Defaults to one-step ahead forecast.

Value

Vector of point forecasts.

See Also

pca.elm_train() for training an ICA based ELM model.

Examples

train_set <- head(price, 12*12)
test_set <- tail(price, 12)
pca.model <- pca.elm_train(train_data = train_set, lags = 12)
y_hat <- pca.elm_forecast(pca.elm_model = pca.model, h = length(test_set))
# Evaluation of the forecasts
if(require("forecast")) forecast::accuracy(y_hat, test_set)

pca.elm_train Training of PCA based ELM model for time series forecasting

Description

An Extreme Learning Machine is trained by utilizing the concept of Principal Component Analysis.
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Usage

pca.elm_train(
train_data,
lags,
comps = lags,
center = TRUE,
scale = TRUE,
bias = TRUE,
actfun = "sig"

)

Arguments

train_data A univariate time series data.

lags Number of lags to be considered.

comps Number of independent components to be considered. Corresponds to number
of hidden nodes. Defaults to maximum value, i.e., lags.

center Whether to compute PCA on mean-adjusted data.

scale Whether to compute PCA on variance-adjusted data.

bias Whether to include bias term while computing output weights. Defaults to TRUE.

actfun Activation function for the hidden layer. Defaults to sig. See Activation functions.

Details

An Extreme Learning Machine (ELM) is trained wherein the weights connecting the input layer
and hidden layer are obtained using Principal Component Analysis (PCA), instead of being chosen
randomly. The number of hidden nodes is determined by the number of principal components.

Value

A list containing the trained ICA-ELM model with the following components.

inp_weights Weights connecting the input layer to hidden layer, obtained from the unmixing
matrix W of ICA. The columns represent the hidden nodes while rows represent
input nodes.

out_weights Weights connecting the hidden layer to output layer.

fitted.values Fitted values of the model.

residuals Residuals of the model.

h.out A data frame containing the hidden layer outputs (activation function applied)
with columns representing hidden nodes and rows representing observations.

data The univariate ts data used for training the model.

lags Number of lags used during training.

comps Number of independent components considered for training. It determines the
number of hidden nodes.

center Whether the input data was mean-adjusted during training.
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scale Whether the input data was variance-adjusted during training.

bias Whether bias node was included during training.

actfun Activation function for the hidden layer. See Activation functions.

Activation functions

The activation function for the hidden layer must be one of the following.

sig Sigmoid function: (1 + e−x)−1

radbas Radial basis function: e−x2

hardlim Hard-limit function:

{
1, if x ≥ 0

0, if x < 0

hardlims Symmetric hard-limit function:

{
1, if x ≥ 0

−1, if x < 0

satlins Symmetric saturating linear function:


1, if x ≥ 1

x, if − 1 < x < 1

−1, if x ≤ −1

tansig Tan-sigmoid function: 2(1 + e−2x)−1 − 1

tribas Triangular basis function:

{
1− |x|, if − 1 ≤ x ≤ 1

0, otherwise

poslin Postive linear function:

{
x, if x ≥ 0

0, otherwise

References

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin philosophical magazine and journal of science, 2(11), 559-572.
doi:10.1080/14786440109462720.

Castaño, A., Fernández-Navarro, F., & Hervás-Martínez, C. (2013). PCA-ELM: a robust and
pruned extreme learning machine approach based on principal component analysis. Neural pro-
cessing letters, 37, 377-392. doi:10.1007/s11063-012-9253-x.

See Also

pca.elm_forecast() for forecasing from trained PCA based ELM model.

Examples

train_set <- head(price, 12*12)
pca.model <- pca.elm_train(train_data = train_set, lags = 12)

doi:10.1080/14786440109462720
doi:10.1007/s11063-012-9253-x
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price Aggregate gram price data

Description

National aggregate price of gram from Indian markets, which is a major pulse in the country. The
observations range from January, 2010 upto December, 2023.

Usage

price

Format

A ts object with 156 observations.

Source

https://www.agmarknet.gov.in/

Examples

plot(price, xlab = "Year", ylab = "Aggregate price of Gram (Rs./Bag)")

https://www.agmarknet.gov.in/
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