
Package ‘SunCalcMeeus’
December 11, 2024

Type Package

Title Sun Position and Daylight Calculations

Version 0.1.1

Date 2024-12-09

Description Compute the position of the sun, and local solar time using Meeus'
formulae. Compute day and/or night length using different
twilight definitions or arbitrary sun elevation angles. This package is
part of the 'r4photobiology' suite, Aphalo, P. J. (2015)
<doi:10.19232/uv4pb.2015.1.14>. Algorithms from Meeus (1998, ISBN:0943396611).

License GPL (>= 2)

Depends R (>= 4.0.0)

Imports stats, tibble (>= 3.1.6), lubridate (>= 1.9.3), dplyr (>=
1.0.9)

Suggests knitr (>= 1.41), rmarkdown (>= 2.18), testthat (>= 3.2.1),
roxygen2 (>= 7.3.0), lutz (>= 0.3.2), covr, spelling

LazyLoad yes

ByteCompile true

URL https://docs.r4photobiology.info/SunCalcMeeus/,

https://github.com/aphalo/SunCalcMeeus

BugReports https://github.com/aphalo/SunCalcMeeus/issues

Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

Language en-US

NeedsCompilation no

Author Pedro J. Aphalo [aut, cre] (<https://orcid.org/0000-0003-3385-972X>)

Maintainer Pedro J. Aphalo <pedro.aphalo@helsinki.fi>

Repository CRAN

Date/Publication 2024-12-11 16:10:02 UTC

1

https://doi.org/10.19232/uv4pb.2015.1.14
https://docs.r4photobiology.info/SunCalcMeeus/
https://github.com/aphalo/SunCalcMeeus
https://github.com/aphalo/SunCalcMeeus/issues
https://orcid.org/0000-0003-3385-972X

2 SunCalcMeeus-package

Contents
SunCalcMeeus-package . 2
as.solar_date . 3
as_tod . 4
day_night . 5
format.solar_time . 9
format.tod_time . 9
is.solar_time . 10
print.solar_time . 11
print.tod_time . 11
relative_AM . 12
solar_time . 14
sun_angles . 16
tz_time_diff . 18
validate_geocode . 19

Index 21

SunCalcMeeus-package SunCalcMeeus: Sun Position and Daylight Calculations

Description

Compute the position of the sun, and local solar time using Meeus’ formulae. Compute day and/or
night length using different twilight definitions or arbitrary sun elevation angles. This package is
part of the ’r4photobiology’ suite, Aphalo, P. J. (2015) doi:10.19232/uv4pb.2015.1.14. Algorithms
from Meeus (1998, ISBN:0943396611).

Details

Please see the vignette 0: The R for Photobiology Suite for a description of the suite.

Author(s)

Maintainer: Pedro J. Aphalo <pedro.aphalo@helsinki.fi> (ORCID)

References

Aphalo, Pedro J. (2015) The r4photobiology suite. UV4Plants Bulletin, 2015:1, 21-29. doi:10.19232/
uv4pb.2015.1.14.

See Also

Useful links:

• https://docs.r4photobiology.info/SunCalcMeeus/

• https://github.com/aphalo/SunCalcMeeus

• Report bugs at https://github.com/aphalo/SunCalcMeeus/issues

https://doi.org/10.19232/uv4pb.2015.1.14
https://orcid.org/0000-0003-3385-972X
https://doi.org/10.19232/uv4pb.2015.1.14
https://doi.org/10.19232/uv4pb.2015.1.14
https://docs.r4photobiology.info/SunCalcMeeus/
https://github.com/aphalo/SunCalcMeeus
https://github.com/aphalo/SunCalcMeeus/issues

as.solar_date 3

Examples

daylength
sunrise_time(lubridate::today(tzone = "EET"), tz = "EET",

geocode = data.frame(lat = 60, lon = 25),
unit.out = "hour")

day_length(lubridate::today(tzone = "EET"), tz = "EET",
geocode = data.frame(lat = 60, lon = 25),
unit.out = "hour")

sun_angles(lubridate::now(tzone = "EET"), tz = "EET",
geocode = data.frame(lat = 60, lon = 25))

as.solar_date Convert a solar_time object into solar_date object

Description

Convert a solar_time object into solar_date object

Usage

as.solar_date(x, time)

Arguments

x solar_time object.

time an R date time object that provides the date part.

Details

Objects of class "solar_time" lack date information, it describes the time since local astronomical
or true midnight. This function adds the date information from the argument passed to time time
assembling a modified time object of class "solar_date".

Value

An object of class "solar.date" object derived from POSIXct. This is needed only for unambiguous
formatting and printing.

See Also

Other Local solar time functions: is.solar_time(), print.solar_time(), solar_time()

4 as_tod

as_tod Convert datetime to time-of-day

Description

Convert a datetime into a time of day expressed in hours, minutes or seconds from midnight in local
time for a time zone. This conversion is useful when time-series data for different days needs to be
compared or plotted based on the local time-of-day.

Usage

as_tod(x, unit.out = "hours", tz = NULL)

Arguments

x a datetime object accepted by lubridate functions.

unit.out character string, One of "tod_time", "hours", "minutes", or "seconds".

tz character string indicating time zone to be used in output.

Value

A numeric vector of the same length as x. If unit.out = "tod_time" an object of class "tod_time"
which a numeric vector as with unit.out = "hours" but with the class attribute set to "tod_time",
which dispatches to special format() and print() methods.

See Also

solar_time

Other Time of day functions: format.tod_time(), print.tod_time()

Examples

library(lubridate)
my_instants <- ymd_hms("2020-05-17 12:05:03") + days(c(0, 30))
my_instants
as_tod(my_instants)
as_tod(my_instants, unit.out = "tod_time")

day_night 5

day_night Times for sun positions

Description

Functions for calculating the timing of solar positions, given geographical coordinates and dates.
They can be also used to find the time for an arbitrary solar elevation between 90 and -90 degrees
by supplying "twilight" angle(s) as argument.

Usage

day_night(
date = lubridate::now(tzone = "UTC"),
tz = ifelse(lubridate::is.Date(date), "UTC", lubridate::tz(date)),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "none",
unit.out = "hours"

)

day_night_fast(date, tz, geocode, twilight, unit.out)

is_daytime(
date = lubridate::now(tzone = "UTC"),
tz = ifelse(lubridate::is.Date(date), "UTC", lubridate::tz(date)),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "none",
unit.out = "hours"

)

noon_time(
date = lubridate::now(tzone = "UTC"),
tz = lubridate::tz(date),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "none",
unit.out = "datetime"

)

sunrise_time(
date = lubridate::now(tzone = "UTC"),
tz = lubridate::tz(date),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "sunlight",
unit.out = "datetime"

)

sunset_time(
date = lubridate::now(tzone = "UTC"),

6 day_night

tz = lubridate::tz(date),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "sunlight",
unit.out = "datetime"

)

day_length(
date = lubridate::now(tzone = "UTC"),
tz = "UTC",
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "sunlight",
unit.out = "hours"

)

night_length(
date = lubridate::now(tzone = "UTC"),
tz = "UTC",
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
twilight = "sunlight",
unit.out = "hours"

)

Arguments

date "vector" of POSIXct times orDate objects, any valid TZ is allowed, default is
current date at Greenwich matching the default for geocode.

tz character vector indicating time zone to be used in output and to interpret Date
values passed as argument to date.

geocode data frame with one or more rows and variables lon and lat as numeric values
(degrees). If present, address will be copied to the output.

twilight character string, one of "none", "rim", "refraction", "sunlight", "civil", "nauti-
cal", "astronomical", or a numeric vector of length one, or two, giving solar
elevation angle(s) in degrees (negative if below the horizon).

unit.out character string, One of "datetime", "day", "hour", "minute", or "second".

Details

Twilight names are interpreted as follows. "none": solar elevation = 0 degrees. "rim": upper rim
of solar disk at the horizon or solar elevation = -0.53 / 2. "refraction": solar elevation = 0 degrees
+ refraction correction. "sunlight": upper rim of solar disk corrected for refraction, which is close
to the value used by the online NOAA Solar Calculator. "civil": -6 degrees, "naval": -12 degrees,
and "astronomical": -18 degrees. Unit names for output are as follows: "day", "hours", "minutes"
and "seconds" times for sunrise and sunset are returned as times-of-day since midnight expressed in
the chosen unit. "date" or "datetime" return the same times as datetime objects with TZ set (this is
much slower than "hours"). Day length and night length are returned as numeric values expressed
in hours when ‘"datetime"’ is passed as argument to unit.out. If twilight is a numeric vector of
length two, the element with index 1 is used for sunrise and that with index 2 for sunset.

day_night 7

is_daytime() supports twilight specifications by name, a test like sun_elevation() > 0 may be
used directly for a numeric angle.

Value

A tibble with variables day, tz, twilight.rise, twilight.set, longitude, latitude, address, sunrise, noon,
sunset, daylength, nightlength or the corresponding individual vectors.

The value returned represents an instant in time or a duration. The class of the object returned
varies depending on the argument passed to parameter unit.out. If unit.out = "datetime", the
returned value is a "POSIXct" vector, otherwise it is a "numeric" vector.

is_daytime() returns a logical vector, with TRUE for day time and FALSE for night time.

noon_time, sunrise_time and sunset_time return a vector of POSIXct times

day_length and night_length return numeric a vector giving the length in hours

Warning

Be aware that R’s Date class does not save time zone metadata. This can lead to ambiguities in
the current implementation based on time instants. The argument passed to date should be of class
POSIXct, in other words an instant in time, from which the correct date will be computed based on
the tz argument.

The time zone in which times passed to date as argument are expressed does not need to be the
local one or match the geocode, however, the returned values will be in the same time zone as the
input.

Note

Function day_night() is an implementation of Meeus equations as used in NOAAs on-line web
calculator, which are very precise and valid for a very broad range of dates. For sunrise and sunset
the times are affected by refraction in the atmosphere, which does in turn depend on weather con-
ditions. The effect of refraction on the apparent position of the sun is only an estimate based on
"typical" conditions. The more tangential to the horizon is the path of the sun, the larger the effect of
refraction is on the times of visual occlusion of the sun behind the horizon—i.e. the largest timing
errors occur at high latitudes. The computation is not defined for latitudes 90 and -90 degrees, i.e.
at the poles.

There exists a different R implementation of the same algorithms called "AstroCalcPureR" available
as function astrocalc4r in package ’fishmethods’. Although the equations used are almost all the
same, the function signatures and which values are returned differ. In particular, the implementation
in ’photobiology’ splits the calculation into two separate functions, one returning angles at given
instants in time, and a separate one returning the timing of events for given dates. In ’fishmethods’
(= 1.11-0) there is a bug in function astrocalc4r() that affects sunrise and sunset times. The times
returned by the functions in package ’photobiology’ have been validated against the NOAA base
implementation.

In the current implementation functions sunrise_time, noon_time, sunset_time, day_length,
night_length and is_daytime are all wrappers on day_night, so if more than one quantity is
needed it is preferable to directly call day_night and extract the different components from the
returned list.

8 day_night

night_length returns the length of night-time conditions in one day (00:00:00 to 23:59:59), rather
than the length of the night between two consecutive days.

References

The primary source for the algorithm used is the book: Meeus, J. (1998) Astronomical Algorithms,
2 ed., Willmann-Bell, Richmond, VA, USA. ISBN 978-0943396613.

A different implementation is available at https://github.com/NEFSC/READ-PDB-AstroCalc4R/
and in R paclage ’fishmethods’. In ’fishmethods’ (= 1.11-0) there is a bug in function astrocalc4r()
that affects sunrise and sunset times.

An interactive web page using the same algorithms is available at https://gml.noaa.gov/grad/
solcalc/. There are small differences in the returned times compared to our function that seem to
be related to the estimation of atmospheric refraction (about 0.1 degrees).

See Also

sun_angles.

Other astronomy related functions: format.solar_time(), sun_angles()

Examples

library(lubridate)

my.geocode <- data.frame(lon = 24.93838,
lat = 60.16986,
address = "Helsinki, Finland")

day_night(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode)

day_night(ymd("2015-05-30", tz = "EET") + days(1:10),
geocode = my.geocode,
twilight = "civil")

sunrise_time(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode)

noon_time(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode)

sunset_time(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode)

day_length(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode)

day_length(ymd("2015-05-30", tz = "EET"),
geocode = my.geocode,
unit.out = "day")

is_daytime(ymd("2015-05-30", tz = "EET") + hours(c(0, 6, 12, 18, 24)),
geocode = my.geocode)

is_daytime(ymd_hms("2015-05-30 03:00:00", tz = "EET"),
geocode = my.geocode)

is_daytime(ymd_hms("2015-05-30 00:00:00", tz = "UTC"),
geocode = my.geocode)

is_daytime(ymd_hms("2015-05-30 03:00:00", tz = "EET"),
geocode = my.geocode,

https://github.com/NEFSC/READ-PDB-AstroCalc4R/
https://gml.noaa.gov/grad/solcalc/
https://gml.noaa.gov/grad/solcalc/

format.solar_time 9

twilight = "civil")
is_daytime(ymd_hms("2015-05-30 00:00:00", tz = "UTC"),

geocode = my.geocode,
twilight = "civil")

format.solar_time Encode in a Common Format

Description

Format a solar_time object for pretty printing

Usage

S3 method for class 'solar_time'
format(x, ..., sep = ":")

Arguments

x an R object

... ignored

sep character used as separator

Value

A character string with the time formatted as "HH:MM:SS", where ":" is the argument passed to
sep.

See Also

Other astronomy related functions: day_night(), sun_angles()

format.tod_time Encode in a Common Format

Description

Format a tod_time object into a character string for pretty printing.

Usage

S3 method for class 'tod_time'
format(x, ..., sep = ":")

10 is.solar_time

Arguments

x an R object

... ignored

sep character used as separator

Value

A character string with the time formatted as "HH:MM:SS", where ":" is the argument passed to
sep.

See Also

Other Time of day functions: as_tod(), print.tod_time()

is.solar_time Query class

Description

Query class

Usage

is.solar_time(x)

is.solar_date(x)

Arguments

x an R object.

Value

A logical value indicating if the object x is of class "solar_time" or "solar_date", depending on
the function.

See Also

Other Local solar time functions: as.solar_date(), print.solar_time(), solar_time()

print.solar_time 11

print.solar_time Print solar time and solar date objects

Description

The object x is printed and returned invisibly.

Usage

S3 method for class 'solar_time'
print(x, ...)

S3 method for class 'solar_date'
print(x, ...)

Arguments

x an R object

... passed to format method

Value

Returns object x, invisibly.

Note

Default is to print the underlying POSIXct or Date as a solar time.

See Also

Other Local solar time functions: as.solar_date(), is.solar_time(), solar_time()

print.tod_time Print time-of-day objects

Description

Defaults to print the underlying numeric vector as a solar time.

Usage

S3 method for class 'tod_time'
print(x, ...)

12 relative_AM

Arguments

x an R object

... passed to format method

Value

Returns object x, invisibly.

See Also

Other Time of day functions: as_tod(), format.tod_time()

relative_AM Relative Air Mass (AM)

Description

Approximate relative air mass (AM) computed from the sun’s apparent or true position (sun eleva-
tion or sun zenith angle) or from geographic and time coordinates.

Usage

relative_AM(
elevation.angle = NULL,
zenith.angle = NULL,
occluded.value = NA_real_

)

relative_AMt(
elevation.angle = NULL,
zenith.angle = NULL,
occluded.value = NA_real_

)

relative_AM_geotime(
time = lubridate::now(tzone = "UTC"),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
occluded.value = NA_real_

)

relative_AMt_geotime(
time = lubridate::now(tzone = "UTC"),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
occluded.value = NA_real_

)

relative_AM 13

Arguments

elevation.angle, zenith.angle
numeric vector Angle in degrees for the sun position. An argument should be
passed to one and only one of elevation_angle or zenith_angle.

occluded.value numeric Value to return when elevation angle is negative (sun below the hori-
zon).

time A "vector" of POSIXct Time, with any valid time zone (TZ) is allowed, default
is current time.

tz character string indicating time zone to be used in output.

geocode data frame with variables lon and lat as numeric values (degrees), nrow > 1,
allowed.

Details

Function relative_AM() implements equation (3) in Kasten and Young (1989). This equation is
only an approximation to the tabulated values in the same paper and based on the apparent position
of the sun as observed from Earth surface. relative_AMt() implements equation (5) in Young
(1994). This equation is only an approximation to the tabulated values based on the true or astro-
nomical position of the sun.

In both cases returned values are rounded to three significant digits.

Function relative_AM_geotime() is a wrapper on relative_AM() that calls function sun_elevation()
to obtain the apparent position of the sun from the geographic and time coordinates. Function
relative_AMt_geotime() is a wrapper on relative_AMt() that calls function sun_elevation()
to obtain the true position of the sun from the geographic and time coordinates. At very low sun
elevations the values returned by these two functions differ slightly because of the use of different
approximations to correct for atmospheric refraction.

Value

A numeric vector with the relative air mass values.

Note

Although relative air mass is not defined when the sun is not visible, returning a value different
from the default NA might be useful in some cases and made possible by passing an argument to
parameter occluded.value.

References

F. Kasten, A. T. Young (1989) Revised optical air mass tables and approximation formula. Applied
Optics, 28, 4735-4738. doi:10.1364/AO.28.004735.

Young, A. T. (1994) Air mass and refraction. Applied Optics, 33, 1108-1110. doi:10.1364/AO.33.001108

See Also

sun_angles

https://doi.org/10.1364/AO.28.004735
https://doi.org/10.1364/AO.33.001108

14 solar_time

Examples

using the apparent sun elevation
relative_AM(elevation.angle = c(90, 60, 30, 1, -10))
relative_AM(elevation.angle = c(90, 60, 30, 1, -10),

occluded.value = Inf)
relative_AM(zenith.angle = 0)

using the true or astronomical sun elevation
relative_AMt(elevation.angle = c(90, 60, 30, 1, -10))
relative_AMt(elevation.angle = c(90, 60, 30, 1, -10),

occluded.value = Inf)
relative_AMt(zenith.angle = 0)

Define example geographic and time coordinates
baires.geo <-

data.frame(lat = 34.60361, lon = -58.38139, address = "Buenos Aires")

using time and geographic coordinates
library(lubridate)
relative_AM_geotime(ymd_hms("2014-06-23 12:00:00",

tz = "America/Argentina/Buenos_Aires"),
geocode = baires.geo)

relative_AMt_geotime(ymd_hms("2014-06-23 12:00:00",
tz = "America/Argentina/Buenos_Aires"),

geocode = baires.geo)
relative_AM_geotime(ymd_hms("2014-06-23 12:00:00",

tz = "America/Argentina/Buenos_Aires") +
hours(0:12),

geocode = baires.geo)

solar_time Local solar time

Description

solar_time() computes the time of day expressed in seconds since the astronomical midnight
using and instant in time and a geocode as input. Solar time is useful when we want to plot data
according to the local solar time rather than the local time in use at a time zone. How the returned
instant in time is expressed depends on the argument passed to unit.out.

Usage

solar_time(
time = lubridate::now(),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
unit.out = "time"

)

solar_time 15

Arguments

time POSIXct Time, any valid time zone (TZ) is allowed, default is current time.

geocode data frame with variables lon and lat as numeric values (degrees).

unit.out character string, One of "datetime", "time", "hour", "minute", or "second".

Details

Solar time is determined by the position of the sun in the sky and it almost always differs from the
time expressed in the local time coordinates in use. The differences can vary from a few minutes
up to a couple of hours depending on the exact location within the time zone and the use or not of
daylight saving time.

Value

In all cases solar time is expressed as time since local astronomical midnight and, thus, lacks date
information. If unit.out = "time", a numeric value in seconds with an additional class attribute
"solar_time"; if unit.out = "datetime", a "POSIXct" value in seconds from midnight but with an
additional class attribute "solar_date"; if unit.out = "hour" or unit.out = "minute" or unit.out
= "second", a numeric value.

Warning!

Returned values are computed based on the time zone of the argument for parameter time. In the
case of solar time, this timezone does not affect the result. However, in the case of solar dates the
date part may be off by one day, if the time zone does not match the coordinates of the geocode
value provided as argument.

Note

The algorithm is approximate, it calculates the difference between local solar noon and noon in the
time zone of time and uses this value for the whole day when converting times into solar time.
Days are not exactly 24 h long. Between successive days the shift is only a few seconds, and this
leads to a small jump at midnight.

See Also

as_tod

Other Local solar time functions: as.solar_date(), is.solar_time(), print.solar_time()

Examples

BA.geocode <-
data.frame(lon = -58.38156, lat = -34.60368, address = "Buenos Aires, Argentina")

sol_t <- solar_time(lubridate::dmy_hms("21/06/2016 10:00:00", tz = "UTC"),
BA.geocode)

sol_t
class(sol_t)

sol_d <- solar_time(lubridate::dmy_hms("21/06/2016 10:00:00", tz = "UTC"),

16 sun_angles

BA.geocode,
unit.out = "datetime")

sol_d
class(sol_d)

sun_angles Sun angles

Description

Function sun_angles() returns the solar angles and Sun to Earth relative distance for given times
and locations using a very accurate algorithm. Convenience functions sun_azimuth(), sun_elevation(),
sun_zenith_angle() and distance_to_sun() are wrappers on sun_angles() that return indi-
vidual vectors.

Usage

sun_angles(
time = lubridate::now(tzone = "UTC"),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
use.refraction = FALSE

)

sun_angles_fast(time, tz, geocode, use.refraction)

sun_elevation(
time = lubridate::now(),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
use.refraction = FALSE

)

sun_zenith_angle(
time = lubridate::now(),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
use.refraction = FALSE

)

sun_azimuth(
time = lubridate::now(),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
use.refraction = FALSE

)

sun_angles 17

distance_to_sun(
time = lubridate::now(),
tz = lubridate::tz(time),
geocode = tibble::tibble(lon = 0, lat = 51.5, address = "Greenwich"),
use.refraction = FALSE

)

Arguments

time A "vector" of POSIXct Time, with any valid time zone (TZ) is allowed, default
is current time.

tz character string indicating time zone to be used in output.

geocode data frame with variables lon and lat as numeric values (degrees), nrow > 1,
allowed.

use.refraction logical Flag indicating whether to correct for fraction in the atmosphere.

Details

This function is an implementation of Meeus equations as used in NOAA’s on-line web calculator,
which are precise and valid for a very broad range of dates (years -1000 to 3000 at least). The
apparent solar elevations near sunrise and sunset are affected by refraction in the atmosphere, which
does in turn depend on weather conditions. The effect of refraction on the apparent position of the
sun is only an estimate based on "typical" conditions for the atmosphere. The computation is not
defined for latitudes 90 and -90 degrees, i.e. exactly at the poles. The function is vectorized and in
particular passing a vector of times for a single geocode enhances performance very much as the
equation of time, the most time consuming step, is computed only once.

For improved performance, if more than one angle is needed it is preferable to directly call sun_angles
instead of the wrapper functions as this avoids the unnecesary recalculation.

Value

A data.frame with variables time (in same TZ as input), TZ, solartime, longitude, latitude,
address, azimuth, elevation, declination, eq.of.time, hour.angle, and distance. If a data
frame with multiple rows is passed to geocode and a vector of times longer than one is passed to
time, sun position for all combinations of locations and times are returned by sun_angles. Angles
are expressed in degrees, solartime is a vector of class "solar.time", distance is expressed in
relative sun units.

Important!

Given an instant in time and a time zone, the date is computed from these, and may differ by one day
to that at the location pointed by geocode at the same instant in time, unless the argument passed
to tz matches the time zone at this location.

18 tz_time_diff

Note

There exists a different R implementation of the same algorithms called "AstroCalcPureR" available
as function astrocalc4r in package ’fishmethods’. Although the equations used are almost all
the same, the function signatures and which values are returned differ. In particular, the present
implementation splits the calculation into two separate functions, one returning angles at given
instants in time, and a separate one returning the timing of events for given dates.

References

The primary source for the algorithm used is the book: Meeus, J. (1998) Astronomical Algorithms,
2 ed., Willmann-Bell, Richmond, VA, USA. ISBN 978-0943396613.

A different implementation is available at https://github.com/NEFSC/READ-PDB-AstroCalc4R/.

An interactive web page using the same algorithms is available at https://gml.noaa.gov/grad/
solcalc/. There are small differences in the returned times compared to our function that seem to
be related to the estimation of atmospheric refraction (about 0.1 degrees).

See Also

Other astronomy related functions: day_night(), format.solar_time()

Examples

library(lubridate)
sun_angles()
sun_azimuth()
sun_elevation()
sun_zenith_angle()
sun_angles(ymd_hms("2014-09-23 12:00:00"))
sun_angles(ymd_hms("2014-09-23 12:00:00"),

geocode = data.frame(lat=60, lon=0))
sun_angles(ymd_hms("2014-09-23 12:00:00") + minutes((0:6) * 10))

tz_time_diff Time difference between two time zones

Description

Returns the difference in local time expressed in hours between two time zones at a given instant in
time. The difference due to daylight saving time or Summer and Winter time as well as historical
changes in time zones are taken into account.

Usage

tz_time_diff(
when = lubridate::now(),
tz.target = lubridate::tz(when),
tz.reference = "UTC"

)

https://github.com/NEFSC/READ-PDB-AstroCalc4R/
https://gml.noaa.gov/grad/solcalc/
https://gml.noaa.gov/grad/solcalc/

validate_geocode 19

Arguments

when datetime A time instant
tz.target, tz.reference

character Two time zones using names recognized by functions from package
’lubridate’

Value

A numeric value.

Note

This function is implemented using functions from package ’lubridate’. For details on the handling
of time zones, please, consult the documentation for Sys.timezone about system differences in
time zone names and handling.

validate_geocode Validate a geocode

Description

Test validity of a geocode or ensure that a geocode is valid.

Usage

validate_geocode(geocode)

is_valid_geocode(geocode)

length_geocode(geocode)

na_geocode()

Arguments

geocode data.frame with geocode data in columns "lat", "lon", and possibly also "address".

Details

validate_geocode Converts to tibble, checks data bounds, converts address to character if it is not
already a character vector, or add character NAs if the address column is missing.

is_valid_geocode Checks if a geocode is valid, returning 0L if not, and the number of row other-
wise.

20 validate_geocode

Value

A valid geocode stored in a tibble.

FALSE for invalid, TRUE for valid.

FALSE for invalid, number of rows for valid.

A geo_code tibble with all fields set to suitable NAs.

Examples

validate_geocode(NA)
validate_geocode(data.frame(lon = -25, lat = 66))

is_valid_geocode(NA)
is_valid_geocode(1L)
is_valid_geocode(data.frame(lon = -25, lat = 66))

na_geocode()

Index

∗ Local solar time functions
as.solar_date, 3
is.solar_time, 10
print.solar_time, 11
solar_time, 14

∗ Time of day functions
as_tod, 4
format.tod_time, 9
print.tod_time, 11

∗ astronomy related functions
day_night, 5
format.solar_time, 9
sun_angles, 16

as.solar_date, 3, 10, 11, 15
as_tod, 4, 10, 12, 15

day_length (day_night), 5
day_night, 5, 9, 18
day_night_fast (day_night), 5
distance_to_sun (sun_angles), 16

format.solar_time, 8, 9, 18
format.tod_time, 4, 9, 12

is.solar_date (is.solar_time), 10
is.solar_time, 3, 10, 11, 15
is_daytime (day_night), 5
is_valid_geocode (validate_geocode), 19

length_geocode (validate_geocode), 19

na_geocode (validate_geocode), 19
night_length (day_night), 5
noon_time (day_night), 5

print.solar_date (print.solar_time), 11
print.solar_time, 3, 10, 11, 15
print.tod_time, 4, 10, 11

relative_AM, 12

relative_AM_geotime (relative_AM), 12
relative_AMt (relative_AM), 12
relative_AMt_geotime (relative_AM), 12

solar_time, 3, 4, 10, 11, 14
sun_angles, 8, 9, 13, 16
sun_angles_fast (sun_angles), 16
sun_azimuth (sun_angles), 16
sun_elevation (sun_angles), 16
sun_zenith_angle (sun_angles), 16
SunCalcMeeus (SunCalcMeeus-package), 2
SunCalcMeeus-package, 2
sunrise_time (day_night), 5
sunset_time (day_night), 5
Sys.timezone, 19

tz_time_diff, 18

validate_geocode, 19

21

	SunCalcMeeus-package
	as.solar_date
	as_tod
	day_night
	format.solar_time
	format.tod_time
	is.solar_time
	print.solar_time
	print.tod_time
	relative_AM
	solar_time
	sun_angles
	tz_time_diff
	validate_geocode
	Index

