
Package ‘TauStar’
December 12, 2024

Type Package

Title Efficient Computation and Testing of the Bergsma-Dassios Sign
Covariance

Version 1.1.7

Date 2024-12-11

Description Computes the t* statistic corresponding to the tau* population
coefficient introduced by Bergsma and Dassios (2014) <DOI:10.3150/13-BEJ514>
and does so in O(n^2) time following the algorithm of Heller and
Heller (2016) <DOI:10.48550/arXiv.1605.08732> building off of the work of Weihs,
Drton, and Leung (2016) <DOI:10.1007/s00180-015-0639-x>. Also allows for
independence testing using the asymptotic distribution of t* as described by
Nandy, Weihs, and Drton (2016) <DOI:10.1214/16-EJS1166>.

License GPL (>= 3)

Imports Rcpp (>= 1.0.1)

LinkingTo Rcpp, RcppArmadillo

Suggests testthat

RoxygenNote 7.3.2

Encoding UTF-8

NeedsCompilation yes

Author Luca Weihs [aut],
Emin Martinian [ctb] (Created the red-black tree library included in
package.),

Julian D. Karch [cre] (<https://orcid.org/0000-0002-1625-2822>)

Maintainer Julian D. Karch <j.d.karch@fsw.leidenuniv.nl>

Repository CRAN

Date/Publication 2024-12-12 15:00:02 UTC

Contents
TauStar-package . 2
binaryQuantileSearch . 3

1

https://doi.org/10.3150/13-BEJ514
https://doi.org/10.48550/arXiv.1605.08732
https://doi.org/10.1007/s00180-015-0639-x
https://doi.org/10.1214/16-EJS1166
https://orcid.org/0000-0002-1625-2822

2 TauStar-package

eigenForDiscreteProbs . 4
isDiscrete . 5
isProb . 5
isProbVector . 6
isValidDataVector . 6
pDisHoeffInd . 7
pHoeffInd . 8
pMixHoeffInd . 8
print.tstest . 9
tauStarTest . 10
tStar . 11

Index 14

TauStar-package Efficient Computation and Testing of the t* Statistic of Bergsma and
Dassios

Description

Computes the t* statistic corresponding to the tau star population coefficient introduced by Bergsma
and Dassios (2014) <DOI:10.3150/13-BEJ514> and does so in O(n^2*log(n)) time following the
algorithm of Weihs, Drton, and Leung (2016) <DOI:10.1007/s00180-015-0639-x>. Also allows
for independence testing using the asymptotic distribution of t* as described by Nandy, Weihs,
and Drton (2016) <http://arxiv.org/abs/1602.04387>. To directly compute the t* statistic see the
function tStar. If otherwise interested in performing tests of independence then see the function
tauStarTest.

Author(s)

Maintainer: Julian D. Karch <j.d.karch@fsw.leidenuniv.nl> (ORCID)

Authors:

• Luca Weihs <lucaw@uw.edu>

Other contributors:

• Emin Martinian (Created the red-black tree library included in package.) [contributor]

References

Bergsma, Wicher; Dassios, Angelos. A consistent test of independence based on a sign covariance
related to Kendall’s tau. Bernoulli 20 (2014), no. 2, 1006–1028.

Luca Weihs, Mathias Drton, and Dennis Leung. Efficient Computation of the Bergsma-Dassios
Sign Covariance. Computational Statistics, x:x-x, 2016. to appear.

Preetam Nandy, Luca Weihs, and Mathias Drton. Large-Sample Theory for the Bergsma-Dassios
Sign Covariance. arXiv preprint arXiv:1602.04387. 2016.

https://orcid.org/0000-0002-1625-2822

binaryQuantileSearch 3

Examples

library(TauStar)

Compute t* for a concordant quadruple
tStar(c(1, 2, 3, 4), c(1, 2, 3, 4)) # == 2/3

Compute t* for a discordant quadruple
tStar(c(1, 2, 3, 4), c(1, -1, 1, -1)) # == -1/3

Compute t* on random normal iid normal data
set.seed(23421)
tStar(rnorm(4000), rnorm(4000)) # near 0

Compute t* as a v-statistic
set.seed(923)
tStar(rnorm(100), rnorm(100), vStatistic = TRUE)

Compute an approximation of tau* via resampling
set.seed(9492)
tStar(rnorm(10000), rnorm(10000),

resample = TRUE, sampleSize = 30, numResamples = 5000
)

Perform a test of independence using continuous data
set.seed(123)
x <- rnorm(100)
y <- rnorm(100)
testResults <- tauStarTest(x, y)
print(testResults$pVal) # big p-value

Now make x and y correlated so we expect a small p-value
y <- y + x
testResults <- tauStarTest(x, y)
print(testResults$pVal) # small p-value

binaryQuantileSearch Quantiles of a distribution.

Description

Computes the pth quantile of a cumulative distribution function using a simple binary serach algo-
rithm. This can be extremely slow but has the benefit of being trivial to implement.

Usage

binaryQuantileSearch(pDistFunc, p, lastLeft, lastRight, error = 10^-4)

4 eigenForDiscreteProbs

Arguments

pDistFunc a cumulative distribution function on the real numbers, it should take a single
argument x and return the cumualtive distribution function evaluated at x.

p the quantile p ∈ [0, 1]

lastLeft binary search works by continuously decreasing the search space from the left
and right. lastLeft should be a lower bound for the quantile p.

lastRight similar to lastRight but should be an upper bound.

error the error tolerated from the binary search

Value

the quantile (within error).

eigenForDiscreteProbs Eigenvalues for discrete asymptotic distribution

Description

Computes the eigenvalues needed to determine the asymptotic distributions in the mixed/discrete
cases. See Nandy, Weihs, and Drton (2016) <http://arxiv.org/abs/1602.04387> for more details.

Usage

eigenForDiscreteProbs(p)

Arguments

p a vector of probabilities that sum to 1.

Value

the eigenvalues associated to the matrix generated by p

isDiscrete 5

isDiscrete Determine if input data is discrete

Description

Attempts to determine if the input data is from a discrete distribution. Will return true if the data
type is of type integer or there are non-unique values.

Usage

isDiscrete(x)

Arguments

x a vector which should be determined if discrete or not.

Value

the best judgement of whether or not the data was discrete

isProb Check if a Valid Probability

Description

Checks if the input vector has a single entry that is between 0 and 1

Usage

isProb(prob)

Arguments

prob the probability to check

Value

TRUE if conditions are met, FALSE if otherwise

6 isValidDataVector

isProbVector Check if Vector of Probabilities

Description

Checks if the input vector has entries that sum to 1 and are non-negative

Usage

isProbVector(probs)

Arguments

probs the probability vector to check

Value

TRUE if conditions are met, FALSE if otherwise

isValidDataVector Is Vector Valid Data?

Description

Determines if input vector is a valid vector of real valued observations

Usage

isValidDataVector(x)

Arguments

x the vector to be tested

Value

TRUE or FALSE

pDisHoeffInd 7

pDisHoeffInd Null asymptotic distribution of t* in the discrete case

Description

Density, distribution function, quantile function and random generation for the asymptotic null
distribution of t* in the discrete case. That is, in the case that t* is generated from a sample of
jointly discrete independent random variables X and Y.

Usage

pDisHoeffInd(x, probs1, probs2, lower.tail = TRUE, error = 10^-5)

dDisHoeffInd(x, probs1, probs2, error = 10^-3)

rDisHoeffInd(n, probs1, probs2)

qDisHoeffInd(p, probs1, probs2, error = 10^-4)

Arguments

x the value (or vector of values) at which to evaluate the function.

probs1 a vector of probabilities corresponding to the (ordered) support of X. That is
if your first random variable has support u1, ..., un then the ith entry of probs
should be P (X = ui).

probs2 just as probs1 but for the second random variable Y.

lower.tail a logical value, if TRUE (default), probabilities are P (X ≤ x) otherwise P (X >
x).

error a tolerated error in the result. This should be considered as a guide rather than
an exact upper bound to the amount of error.

n the number of observations to return.

p the probability (or vector of probabilities) for which to get the quantile.

Value

dDisHoeffInd gives the density, pDisHoeffInd gives the distribution function, qDisHoeffInd gives
the quantile function, and rDisHoeffInd generates random samples.

8 pMixHoeffInd

pHoeffInd Null asymptotic distribution of t* in the continuous case

Description

Density, distribution function, quantile function and random generation for the asymptotic null
distribution of t* in the continuous case. That is, in the case that t* is generated from a sample of
jointly continuous independent random variables.

Usage

pHoeffInd(x, lower.tail = TRUE, error = 10^-5)

rHoeffInd(n)

dHoeffInd(x, error = 1/2 * 10^-3)

qHoeffInd(p, error = 10^-4)

Arguments

x the value (or vector of values) at which to evaluate the function.

lower.tail a logical value, if TRUE (default), probabilities are P (X ≤ x) otherwise P (X >
x).

error a tolerated error in the result. This should be considered as a guide rather than
an exact upper bound to the amount of error.

n the number of observations to return.

p the probability (or vector of probabilities) for which to get the quantile.

Value

dHoeffInd gives the density, pHoeffInd gives the distribution function, qHoeffInd gives the quantile
function, and rHoeffInd generates random samples.

pMixHoeffInd Null asymptotic distribution of t* in the mixed case

Description

Density, distribution function, quantile function and random generation for the asymptotic null
distribution of t* in the mixed case. That is, in the case that t* is generated a sample from an inde-
pendent bivariate distribution where one coordinate is marginally discrete and the other marginally
continuous.

print.tstest 9

Usage

pMixHoeffInd(x, probs, lower.tail = TRUE, error = 10^-6)

dMixHoeffInd(x, probs, error = 10^-3)

rMixHoeffInd(n, probs, error = 10^-8)

qMixHoeffInd(p, probs, error = 10^-4)

Arguments

x the value (or vector of values) at which to evaluate the function.

probs a vector of probabilities corresponding to the (ordered) support the marginally
discrete random variable. That is, if the marginally discrete distribution has
support u1, ..., un then the ith entry of probs should be the probability of seeing
ui.

lower.tail a logical value, if TRUE (default), probabilities are P (X ≤ x) otherwise P (X >
x).

error a tolerated error in the result. This should be considered as a guide rather than
an exact upper bound to the amount of error.

n the number of observations to return.

p the probability (or vector of probabilities) for which to get the quantile.

Value

dMixHoeffInd gives the density, pMixHoeffInd gives the distribution function, qMixHoeffInd gives
the quantile function, and rMixHoeffInd generates random samples.

print.tstest Print Tau* Test Results

Description

A simple print function for tstest (Tau* test) objects.

Usage

S3 method for class 'tstest'
print(x, ...)

Arguments

x the tstest object to be printed

... ignored.

10 tauStarTest

Value

No return value, prints to console.

tauStarTest Test of Independence Using the Tau* Measure

Description

Performs a (consistent) test of independence between two input vectors using the asymptotic (or
permutation based) distribution of the test statistic t*. The asymptotic results hold in the case that
x is generated from either a discrete or continous distribution and similarly for y (in particular it
is allowed for one to be continuous while the other is discrete). The asymptotic distributions were
computed in Nandy, Weihs, and Drton (2016) <http://arxiv.org/abs/1602.04387>.

Usage

tauStarTest(x, y, mode = "auto", resamples = 1000)

Arguments

x a vector of sampled values.

y a vector of sampled values corresponding to x, y must be the same length as x.

mode should be one of five possible values: "auto", "continuous", "discrete", "mixed",
or "permutation". If "auto" is selected then the function will attempt to auto-
matically determine whether x,y are discrete or continuous and then perform the
appropriate asymptotic test. In cases "continuous", "discrete", and "mixed" we
perform the associated asymptotic test making the given assumption. Finally if
"permutation" is selected then the function runs a Monte-Carlo permutation test
for some given number of resamplings.

resamples the number of resamplings to do if mode = "permutation". Otherwise this value
is ignored.

Value

a list with class "tstest" recording the outcome of the test.

References

Preetam Nandy, Luca Weihs, and Mathias Drton. Large-Sample Theory for the Bergsma-Dassios
Sign Covariance. arXiv preprint arXiv:1602.04387. 2016.

tStar 11

Examples

set.seed(123)
x <- rnorm(100)
y <- rnorm(100)
testResults <- tauStarTest(x, y)
print(testResults$pVal) # big p-value

y <- y + x # make x and y correlated
testResults <- tauStarTest(x, y)
print(testResults$pVal) # small p-value

tStar Computing t*

Description

Computes the t* U-statistic for input data pairs (x_1,y_1), (x_2,y_2), ..., (x_n,y_n) using the al-
gorithm developed by Heller and Heller (2016) <arXiv:1605.08732> building off of the work of
Weihs, Drton, and Leung (2015) <DOI:10.1007/s00180-015-0639-x>.

Usage

tStar(
x,
y,
vStatistic = FALSE,
resample = FALSE,
numResamples = 500,
sampleSize = min(length(x), 1000),
method = "fastest",
slow = FALSE

)

Arguments

x A numeric vector of x values (length >= 4).
y A numeric vector of y values, should be of the same length as x.
vStatistic If TRUE then will compute the V-statistic version of t*, otherwise will compute

the U-Statistic version of t*. Default is to compute the U-statistic.
resample If TRUE then will compute an approximation of t* using a subsettting approach:

samples of size sampleSize are taken from the data numResample times, t* is
computed on each subsample, and all subsample t* values are then averaged.
Note that this only works when vStatistic == FALSE, in general you probably
don’t want to compute the V-statistic via resampling as the size of the bias de-
pends on the sampleSize irrespective numResamples. Default is resample ==
FALSE so that t* is computed on all of the data, this may be slow for very large
sample sizes. Resampling can only be used when the method argument is using
its default.

12 tStar

numResamples See resample variable description for details, this value is ignored if resample
== FALSE (ignored by default).

sampleSize See resample variable description for details, this value is ignored if resample
== FALSE (ignored by default).

method which method to use to compute the statistic. Default is "fastest" which uses the
fastest available method (currently "heller"). The options are "heller" described
in Heller and Heller (2016), "weihs", using the algorithm from Weihs et al.
(2015), and "naive" using a naive algorithm.

slow a deprecated option kept for backwards compatability. If TRUE then will over-
ride the method parameter and compute the t* statistic using a naive O(n^4)
algorithm.

Value

The numeric value of the t* statistic.

References

Bergsma, Wicher; Dassios, Angelos. A consistent test of independence based on a sign covariance
related to Kendall’s tau. Bernoulli 20 (2014), no. 2, 1006–1028.

Heller, Yair and Heller, Ruth. "Computing the Bergsma Dassios sign-covariance." arXiv preprint
arXiv:1605.08732 (2016).

Weihs, Luca, Mathias Drton, and Dennis Leung. "Efficient Computation of the Bergsma-Dassios
Sign Covariance." arXiv preprint arXiv:1504.00964 (2015).

Examples

library(TauStar)

Compute t* for a concordant quadruple
tStar(c(1, 2, 3, 4), c(1, 2, 3, 4)) # == 2/3

Compute t* for a discordant quadruple
tStar(c(1, 2, 3, 4), c(1, -1, 1, -1)) # == -1/3

Compute t* on random normal iid normal data
set.seed(23421)
tStar(rnorm(4000), rnorm(4000)) # near 0

Compute t* as a v-statistic
set.seed(923)
tStar(rnorm(100), rnorm(100), vStatistic = TRUE)

Compute an approximation of tau* via resampling
set.seed(9492)
tStar(rnorm(10000), rnorm(10000),

resample = TRUE, sampleSize = 30,
numResamples = 5000

tStar 13

)

Index

binaryQuantileSearch, 3

dDisHoeffInd (pDisHoeffInd), 7
dHoeffInd (pHoeffInd), 8
dMixHoeffInd (pMixHoeffInd), 8

eigenForDiscreteProbs, 4

isDiscrete, 5
isProb, 5
isProbVector, 6
isValidDataVector, 6

pDisHoeffInd, 7
pHoeffInd, 8
pMixHoeffInd, 8
print.tstest, 9

qDisHoeffInd (pDisHoeffInd), 7
qHoeffInd (pHoeffInd), 8
qMixHoeffInd (pMixHoeffInd), 8

rDisHoeffInd (pDisHoeffInd), 7
rHoeffInd (pHoeffInd), 8
rMixHoeffInd (pMixHoeffInd), 8

TauStar (TauStar-package), 2
TauStar-package, 2
tauStarTest, 10
tStar, 11

14

	TauStar-package
	binaryQuantileSearch
	eigenForDiscreteProbs
	isDiscrete
	isProb
	isProbVector
	isValidDataVector
	pDisHoeffInd
	pHoeffInd
	pMixHoeffInd
	print.tstest
	tauStarTest
	tStar
	Index

