Package 'hdcuremodels'

June 13, 2024
Title Penalized Mixture Cure Models for High-Dimensional Data
Version 0.0.1
Date 2024-06-11
Description Provides functions for fitting various penalized parametric and semi-parametric mixture cure models with different penalty functions, testing for a significant cure fraction, and testing for sufficient follow-up as de-
scribed in Fu et al (2022)doi:10.1002/sim.9513 and Archer et al (2024)doi:10.1186/s13045-024-01553-6. False discovery rate controlled variable selection is provided using modelX knock-offs.

License MIT + file LICENSE
Encoding UTF-8
Depends R (>=4.2.0)
Imports doParallel, flexsurv, flexsurvcure, foreach, ggplot2, ggpubr, glmnet, knockoff, mvnfast, parallel, plyr, methods, survival

RoxygenNote 7.3.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
LazyData true
NeedsCompilation no
Author Han Fu [aut],
Kellie J. Archer [aut, cre] (https://orcid.org/0000-0003-1555-5781)
Maintainer Kellie J. Archer archer.43@osu.edu
Repository CRAN
Date/Publication 2024-06-13 10:10:06 UTC

Contents

amltest 2
amltrain 11
AUC 20
coef.mixturecure 22
concordance_mcm 23
cureem 24
curegmifs 27
cure_estimate 29
cv_cureem 30
cv_curegmifs 35
generate_cure_data 38
nonzerocure_test 40
plot.mixturecure 41
predict.mixturecure 42
print.mixturecure 43
sufficient_fu_test 44
summary.mixturecure 45
Index 47
amltest AML test data

Description

Duration of complete response for 40 cytogenetically normal AML patients and a subset of 320 transcript expression from RNA-sequencing.

Usage

amltest

Format

A data frame with 40 rows (subjects) and 322 columns:
cryr duration of complete response in years
relapse.death censoring indicator: $1=$ relapsed or died; $0=$ alive at last follow=up
ENSG00000001561 normalized expression for indicated transcript
ENSG00000005249 normalized expression for indicated transcript
ENSG00000006757 normalized expression for indicated transcript
ENSG00000007062 normalized expression for indicated transcript
ENSG00000007968 normalized expression for indicated transcript
ENSG00000008283 normalized expression for indicated transcript
ENSG00000008405 normalized expression for indicated transcript
ENSG00000008441 normalized expression for indicated transcript
ENSG00000010295 normalized expression for indicated transcript
ENSG00000011028 normalized expression for indicated transcript

ENSG00000011198 normalized expression for indicated transcript ENSG00000012779 normalized expression for indicated transcript ENSG00000012817 normalized expression for indicated transcript ENSG00000013306 normalized expression for indicated transcript ENSG000000013725 normalized expression for indicated transcript ENSG00000018189 normalized expression for indicated transcript ENSG00000022267 normalized expression for indicated transcript ENSG00000023171 normalized expression for indicated transcript ENSG00000023909 normalized expression for indicated transcript ENSG00000029639 normalized expression for indicated transcript ENSG00000047634 normalized expression for indicated transcript ENSG00000049192 normalized expression for indicated transcript ENSG00000053524 normalized expression for indicated transcript ENSG00000058056 normalized expression for indicated transcript ENSG00000060138 normalized expression for indicated transcript ENSG000000061918 normalized expression for indicated transcript ENSG00000065809 normalized expression for indicated transcript ENSG00000065923 normalized expression for indicated transcript ENSG00000068489 normalized expression for indicated transcript ENSG00000069020 normalized expression for indicated transcript ENSG00000070404 normalized expression for indicated transcript ENSG00000071894 normalized expression for indicated transcript ENSG00000072422 normalized expression for indicated transcript ENSG00000073605 normalized expression for indicated transcript ENSG00000076555 normalized expression for indicated transcript ENSG00000080823 normalized expression for indicated transcript ENSG000000089723 normalized expression for indicated transcript ENSG00000090382 normalized expression for indicated transcript ENSG000000090975 normalized expression for indicated transcript ENSG00000100068 normalized expression for indicated transcript ENSG00000100077 normalized expression for indicated transcript ENSG00000100299 normalized expression for indicated transcript ENSG00000100376 normalized expression for indicated transcript ENSG00000100418 normalized expression for indicated transcript ENSG00000100448 normalized expression for indicated transcript ENSG00000100596 normalized expression for indicated transcript ENSG00000100916 normalized expression for indicated transcript

ENSG00000102409 normalized expression for indicated transcript ENSG00000102760 normalized expression for indicated transcript
ENSG00000104689 normalized expression for indicated transcript
ENSG00000104946 normalized expression for indicated transcript
ENSG00000105518 normalized expression for indicated transcript
ENSG00000105808 normalized expression for indicated transcript
ENSG00000106367 normalized expression for indicated transcript ENSG00000106526 normalized expression for indicated transcript
ENSG00000106546 normalized expression for indicated transcript
ENSG00000106780 normalized expression for indicated transcript
ENSG00000107104 normalized expression for indicated transcript
ENSG00000107742 normalized expression for indicated transcript
ENSG00000107798 normalized expression for indicated transcript
ENSG00000107816 normalized expression for indicated transcript
ENSG00000107957 normalized expression for indicated transcript
ENSG00000109674 normalized expression for indicated transcript
ENSG00000110076 normalized expression for indicated transcript
ENSG00000110237 normalized expression for indicated transcript
ENSG00000110492 normalized expression for indicated transcript
ENSG00000110799 normalized expression for indicated transcript
ENSG00000111275 normalized expression for indicated transcript
ENSG00000112773 normalized expression for indicated transcript
ENSG00000113504 normalized expression for indicated transcript
ENSG00000114268 normalized expression for indicated transcript
ENSG00000114737 normalized expression for indicated transcript
ENSG00000115183 normalized expression for indicated transcript
ENSG00000115414 normalized expression for indicated transcript
ENSG00000115457 normalized expression for indicated transcript
ENSG00000115525 normalized expression for indicated transcript
ENSG00000116574 normalized expression for indicated transcript
ENSG00000117480 normalized expression for indicated transcript
ENSG00000119280 normalized expression for indicated transcript
ENSG00000120594 normalized expression for indicated transcript
ENSG00000120675 normalized expression for indicated transcript
ENSG00000120832 normalized expression for indicated transcript
ENSG00000120913 normalized expression for indicated transcript
ENSG00000121005 normalized expression for indicated transcript

ENSG00000121039 normalized expression for indicated transcript ENSG00000121274 normalized expression for indicated transcript ENSG00000123080 normalized expression for indicated transcript ENSG00000123836 normalized expression for indicated transcript ENSG000000124019 normalized expression for indicated transcript ENSG00000124882 normalized expression for indicated transcript
ENSG00000126822 normalized expression for indicated transcript ENSG00000127152 normalized expression for indicated transcript ENSG00000129824 normalized expression for indicated transcript ENSG00000130702 normalized expression for indicated transcript ENSG00000131188 normalized expression for indicated transcript ENSG00000131370 normalized expression for indicated transcript ENSG00000132122 normalized expression for indicated transcript ENSG00000132530 normalized expression for indicated transcript ENSG000000132819 normalized expression for indicated transcript ENSG00000132849 normalized expression for indicated transcript ENSG00000133401 normalized expression for indicated transcript ENSG00000133619 normalized expression for indicated transcript ENSG00000134531 normalized expression for indicated transcript ENSG00000134897 normalized expression for indicated transcript ENSG00000135074 normalized expression for indicated transcript ENSG00000135245 normalized expression for indicated transcript ENSG00000135272 normalized expression for indicated transcript ENSG00000135362 normalized expression for indicated transcript ENSG00000135363 normalized expression for indicated transcript ENSG00000135916 normalized expression for indicated transcript ENSG00000136026 normalized expression for indicated transcript ENSG00000136193 normalized expression for indicated transcript ENSG00000136231 normalized expression for indicated transcript ENSG00000136997 normalized expression for indicated transcript ENSG00000137193 normalized expression for indicated transcript ENSG00000137198 normalized expression for indicated transcript ENSG00000138722 normalized expression for indicated transcript ENSG00000139318 normalized expression for indicated transcript ENSG00000140287 normalized expression for indicated transcript ENSG00000144036 normalized expression for indicated transcript ENSG00000144647 normalized expression for indicated transcript

ENSG00000144677 normalized expression for indicated transcript ENSG00000145476 normalized expression for indicated transcript
ENSG00000145545 normalized expression for indicated transcript
ENSG00000146243 normalized expression for indicated transcript
ENSG00000146373 normalized expression for indicated transcript
ENSG00000147044 normalized expression for indicated transcript
ENSG00000147180 normalized expression for indicated transcript
ENSG00000148444 normalized expression for indicated transcript
ENSG00000148484 normalized expression for indicated transcript
ENSG00000149131 normalized expression for indicated transcript
ENSG00000150760 normalized expression for indicated transcript
ENSG00000150782 normalized expression for indicated transcript
ENSG00000151135 normalized expression for indicated transcript
ENSG00000151208 normalized expression for indicated transcript
ENSG00000151458 normalized expression for indicated transcript
ENSG00000152409 normalized expression for indicated transcript
ENSG00000152580 normalized expression for indicated transcript
ENSG00000152767 normalized expression for indicated transcript
ENSG00000152778 normalized expression for indicated transcript
ENSG00000153563 normalized expression for indicated transcript
ENSG00000154217 normalized expression for indicated transcript
ENSG00000154743 normalized expression for indicated transcript
ENSG00000154760 normalized expression for indicated transcript
ENSG00000154874 normalized expression for indicated transcript
ENSG00000156381 normalized expression for indicated transcript
ENSG00000157107 normalized expression for indicated transcript
ENSG00000157240 normalized expression for indicated transcript
ENSG00000157873 normalized expression for indicated transcript
ENSG00000157978 normalized expression for indicated transcript
ENSG00000158691 normalized expression for indicated transcript
ENSG00000159339 normalized expression for indicated transcript
ENSG00000159403 normalized expression for indicated transcript
ENSG00000159788 normalized expression for indicated transcript
ENSG00000160685 normalized expression for indicated transcript
ENSG00000160781 normalized expression for indicated transcript
ENSG00000161509 normalized expression for indicated transcript
ENSG00000162433 normalized expression for indicated transcript

ENSG000000162614 normalized expression for indicated transcript ENSG00000162676 normalized expression for indicated transcript ENSG00000163412 normalized expression for indicated transcript ENSG00000163702 normalized expression for indicated transcript ENSG00000163814 normalized expression for indicated transcript ENSG00000164086 normalized expression for indicated transcript ENSG00000164172 normalized expression for indicated transcript ENSG00000164442 normalized expression for indicated transcript ENSG00000165272 normalized expression for indicated transcript ENSG00000166165 normalized expression for indicated transcript ENSG00000166435 normalized expression for indicated transcript ENSG00000166987 normalized expression for indicated transcript ENSG00000167291 normalized expression for indicated transcript ENSG00000167565 normalized expression for indicated transcript ENSG00000167851 normalized expression for indicated transcript ENSG00000168026 normalized expression for indicated transcript ENSG00000168209 normalized expression for indicated transcript ENSG00000168502 normalized expression for indicated transcript ENSG00000168939 normalized expression for indicated transcript ENSG00000169203 normalized expression for indicated transcript ENSG00000169247 normalized expression for indicated transcript ENSG00000169504 normalized expression for indicated transcript ENSG00000169860 normalized expression for indicated transcript ENSG00000169991 normalized expression for indicated transcript ENSG00000170035 normalized expression for indicated transcript ENSG00000170180 normalized expression for indicated transcript ENSG00000170456 normalized expression for indicated transcript ENSG00000170522 normalized expression for indicated transcript ENSG00000170909 normalized expression for indicated transcript ENSG00000171121 normalized expression for indicated transcript ENSG00000171222 normalized expression for indicated transcript ENSG00000171476 normalized expression for indicated transcript ENSG00000171813 normalized expression for indicated transcript ENSG00000171962 normalized expression for indicated transcript ENSG00000172197 normalized expression for indicated transcript ENSG00000172236 normalized expression for indicated transcript ENSG00000173083 normalized expression for indicated transcript

ENSG00000173530 normalized expression for indicated transcript ENSG00000173926 normalized expression for indicated transcript
ENSG00000174059 normalized expression for indicated transcript
ENSG00000174080 normalized expression for indicated transcript
ENSG00000174130 normalized expression for indicated transcript
ENSG00000174738 normalized expression for indicated transcript
ENSG00000175265 normalized expression for indicated transcript
ENSG00000175352 normalized expression for indicated transcript
ENSG00000176597 normalized expression for indicated transcript
ENSG00000179222 normalized expression for indicated transcript
ENSG00000179630 normalized expression for indicated transcript
ENSG00000179639 normalized expression for indicated transcript
ENSG00000179820 normalized expression for indicated transcript
ENSG00000180096 normalized expression for indicated transcript
ENSG00000180596 normalized expression for indicated transcript
ENSG00000180902 normalized expression for indicated transcript
ENSG00000181104 normalized expression for indicated transcript
ENSG00000182866 normalized expression for indicated transcript
ENSG00000182871 normalized expression for indicated transcript
ENSG00000183087 normalized expression for indicated transcript
ENSG00000183091 normalized expression for indicated transcript
ENSG00000184371 normalized expression for indicated transcript
ENSG00000185129 normalized expression for indicated transcript
ENSG00000185201 normalized expression for indicated transcript
ENSG00000185245 normalized expression for indicated transcript
ENSG00000185291 normalized expression for indicated transcript
ENSG00000185304 normalized expression for indicated transcript
ENSG00000185710 normalized expression for indicated transcript
ENSG00000185883 normalized expression for indicated transcript
ENSG00000185986 normalized expression for indicated transcript
ENSG00000186130 normalized expression for indicated transcript
ENSG00000186854 normalized expression for indicated transcript
ENSG00000187010 normalized expression for indicated transcript
ENSG00000187627 normalized expression for indicated transcript
ENSG00000187653 normalized expression for indicated transcript
ENSG00000187837 normalized expression for indicated transcript
ENSG00000188002 normalized expression for indicated transcript

ENSG00000188107 normalized expression for indicated transcript ENSG00000188211 normalized expression for indicated transcript ENSG00000188636 normalized expression for indicated transcript ENSG00000188738 normalized expression for indicated transcript ENSG00000188856 normalized expression for indicated transcript ENSG00000189164 normalized expression for indicated transcript ENSG00000189223 normalized expression for indicated transcript ENSG00000196155 normalized expression for indicated transcript ENSG00000196189 normalized expression for indicated transcript ENSG00000196415 normalized expression for indicated transcript ENSG00000196565 normalized expression for indicated transcript ENSG00000197081 normalized expression for indicated transcript ENSG00000197121 normalized expression for indicated transcript ENSG00000197253 normalized expression for indicated transcript ENSG00000197256 normalized expression for indicated transcript ENSG00000197321 normalized expression for indicated transcript ENSG00000197561 normalized expression for indicated transcript ENSG00000197728 normalized expression for indicated transcript ENSG00000197860 normalized expression for indicated transcript ENSG00000197937 normalized expression for indicated transcript ENSG00000197951 normalized expression for indicated transcript ENSG00000198743 normalized expression for indicated transcript ENSG00000198838 normalized expression for indicated transcript ENSG00000199347 normalized expression for indicated transcript ENSG00000200243 normalized expression for indicated transcript ENSG00000201801 normalized expression for indicated transcript ENSG00000203872 normalized expression for indicated transcript ENSG00000204172 normalized expression for indicated transcript ENSG00000205571 normalized expression for indicated transcript ENSG00000205593 normalized expression for indicated transcript ENSG00000208772 normalized expression for indicated transcript ENSG00000213085 normalized expression for indicated transcript ENSG00000213261 normalized expression for indicated transcript ENSG00000213626 normalized expression for indicated transcript ENSG00000213722 normalized expression for indicated transcript ENSG00000213906 normalized expression for indicated transcript ENSG00000213967 normalized expression for indicated transcript

ENSG00000214016 normalized expression for indicated transcript ENSG00000214425 normalized expression for indicated transcript ENSG00000216316 normalized expression for indicated transcript ENSG00000220008 normalized expression for indicated transcript ENSG00000223345 normalized expression for indicated transcript ENSG00000224080 normalized expression for indicated transcript ENSG00000225138 normalized expression for indicated transcript ENSG00000226471 normalized expression for indicated transcript ENSG00000227097 normalized expression for indicated transcript ENSG00000227191 normalized expression for indicated transcript ENSG00000227615 normalized expression for indicated transcript ENSG00000228049 normalized expression for indicated transcript ENSG00000229153 normalized expression for indicated transcript ENSG00000230076 normalized expression for indicated transcript ENSG00000231160 normalized expression for indicated transcript ENSG00000231721 normalized expression for indicated transcript ENSG00000233927 normalized expression for indicated transcript ENSG00000233974 normalized expression for indicated transcript ENSG00000234883 normalized expression for indicated transcript ENSG00000236876 normalized expression for indicated transcript ENSG00000237298 normalized expression for indicated transcript ENSG00000237892 normalized expression for indicated transcript ENSG00000238160 normalized expression for indicated transcript ENSG00000239437 normalized expression for indicated transcript ENSG00000241399 normalized expression for indicated transcript ENSG00000241489 normalized expression for indicated transcript ENSG00000241529 normalized expression for indicated transcript ENSG00000244405 normalized expression for indicated transcript ENSG00000247627 normalized expression for indicated transcript ENSG00000249592 normalized expression for indicated transcript ENSG00000250116 normalized expression for indicated transcript ENSG00000250251 normalized expression for indicated transcript ENSG00000251079 normalized expression for indicated transcript ENSG00000253210 normalized expression for indicated transcript ENSG00000253276 normalized expression for indicated transcript ENSG00000254415 normalized expression for indicated transcript ENSG00000259276 normalized expression for indicated transcript

ENSG00000260727 normalized expression for indicated transcript
ENSG00000261377 normalized expression for indicated transcript
ENSG00000264885 normalized expression for indicated transcript
ENSG00000264895 normalized expression for indicated transcript
ENSG00000267136 normalized expression for indicated transcript
ENSG00000267551 normalized expression for indicated transcript
ENSG00000267702 normalized expression for indicated transcript
ENSG00000268001 normalized expression for indicated transcript
ENSG00000268573 normalized expression for indicated transcript
ENSG00000270554 normalized expression for indicated transcript
ENSG00000270562 normalized expression for indicated transcript
ENSG00000271646 normalized expression for indicated transcript
ENSG00000273018 normalized expression for indicated transcript ENSG00000273033 normalized expression for indicated transcript

Source
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068580/

```
amltrain AML training data
```


Description

Duration of complete response for 306 cytogenetically normal AML patients and a subset of 320 transcript expression from RNA-sequencing.

Usage
 amltrain

Format

A data frame with 306 rows (subjects) and 322 columns:
cryr duration of complete response in years
relapse.death censoring indicator: $1=$ relapsed or died; $0=$ alive at last follow=up
ENSG00000001561 normalized expression for indicated transcript
ENSG00000005249 normalized expression for indicated transcript
ENSG00000006757 normalized expression for indicated transcript
ENSG00000007062 normalized expression for indicated transcript
ENSG00000007968 normalized expression for indicated transcript

ENSG00000008283 normalized expression for indicated transcript ENSG00000008405 normalized expression for indicated transcript
ENSG000000088441 normalized expression for indicated transcript ENSG00000010295 normalized expression for indicated transcript
ENSG000000011028 normalized expression for indicated transcript ENSG00000011198 normalized expression for indicated transcript
ENSG00000012779 normalized expression for indicated transcript ENSG00000012817 normalized expression for indicated transcript ENSG00000013306 normalized expression for indicated transcript ENSG00000013725 normalized expression for indicated transcript ENSG00000018189 normalized expression for indicated transcript ENSG00000022267 normalized expression for indicated transcript ENSG00000023171 normalized expression for indicated transcript ENSG00000023909 normalized expression for indicated transcript ENSG00000029639 normalized expression for indicated transcript ENSG00000047634 normalized expression for indicated transcript ENSG00000049192 normalized expression for indicated transcript ENSG00000053524 normalized expression for indicated transcript ENSG00000058056 normalized expression for indicated transcript ENSG00000060138 normalized expression for indicated transcript ENSG00000061918 normalized expression for indicated transcript ENSG00000065809 normalized expression for indicated transcript ENSG00000065923 normalized expression for indicated transcript ENSG00000068489 normalized expression for indicated transcript ENSG000000069020 normalized expression for indicated transcript ENSG00000070404 normalized expression for indicated transcript ENSG00000071894 normalized expression for indicated transcript ENSG00000072422 normalized expression for indicated transcript ENSG00000073605 normalized expression for indicated transcript ENSG00000076555 normalized expression for indicated transcript ENSG00000080823 normalized expression for indicated transcript ENSG00000089723 normalized expression for indicated transcript ENSG000000090382 normalized expression for indicated transcript ENSG00000090975 normalized expression for indicated transcript ENSG00000100068 normalized expression for indicated transcript ENSG00000100077 normalized expression for indicated transcript ENSG00000100299 normalized expression for indicated transcript

ENSG00000100376 normalized expression for indicated transcript ENSG00000100418 normalized expression for indicated transcript ENSG00000100448 normalized expression for indicated transcript ENSG00000100596 normalized expression for indicated transcript ENSG00000100916 normalized expression for indicated transcript ENSG00000102409 normalized expression for indicated transcript ENSG00000102760 normalized expression for indicated transcript ENSG00000104689 normalized expression for indicated transcript ENSG00000104946 normalized expression for indicated transcript ENSG00000105518 normalized expression for indicated transcript ENSG00000105808 normalized expression for indicated transcript ENSG00000106367 normalized expression for indicated transcript ENSG00000106526 normalized expression for indicated transcript ENSG00000106546 normalized expression for indicated transcript ENSG00000106780 normalized expression for indicated transcript ENSG00000107104 normalized expression for indicated transcript ENSG00000107742 normalized expression for indicated transcript ENSG00000107798 normalized expression for indicated transcript ENSG00000107816 normalized expression for indicated transcript ENSG00000107957 normalized expression for indicated transcript ENSG00000109674 normalized expression for indicated transcript ENSG00000110076 normalized expression for indicated transcript ENSG00000110237 normalized expression for indicated transcript ENSG00000110492 normalized expression for indicated transcript ENSG00000110799 normalized expression for indicated transcript ENSG00000111275 normalized expression for indicated transcript ENSG00000112773 normalized expression for indicated transcript ENSG00000113504 normalized expression for indicated transcript ENSG00000114268 normalized expression for indicated transcript ENSG00000114737 normalized expression for indicated transcript ENSG00000115183 normalized expression for indicated transcript ENSG00000115414 normalized expression for indicated transcript ENSG00000115457 normalized expression for indicated transcript ENSG00000115525 normalized expression for indicated transcript ENSG00000116574 normalized expression for indicated transcript ENSG00000117480 normalized expression for indicated transcript ENSG00000119280 normalized expression for indicated transcript

ENSG00000120594 normalized expression for indicated transcript ENSG00000120675 normalized expression for indicated transcript ENSG00000120832 normalized expression for indicated transcript ENSG00000120913 normalized expression for indicated transcript ENSG00000121005 normalized expression for indicated transcript ENSG00000121039 normalized expression for indicated transcript ENSG00000121274 normalized expression for indicated transcript ENSG00000123080 normalized expression for indicated transcript ENSG00000123836 normalized expression for indicated transcript ENSG00000124019 normalized expression for indicated transcript ENSG00000124882 normalized expression for indicated transcript ENSG00000126822 normalized expression for indicated transcript ENSG00000127152 normalized expression for indicated transcript ENSG00000129824 normalized expression for indicated transcript ENSG00000130702 normalized expression for indicated transcript ENSG00000131188 normalized expression for indicated transcript ENSG00000131370 normalized expression for indicated transcript ENSG00000132122 normalized expression for indicated transcript ENSG00000132530 normalized expression for indicated transcript ENSG00000132819 normalized expression for indicated transcript ENSG00000132849 normalized expression for indicated transcript ENSG00000133401 normalized expression for indicated transcript ENSG00000133619 normalized expression for indicated transcript ENSG00000134531 normalized expression for indicated transcript ENSG00000134897 normalized expression for indicated transcript ENSG00000135074 normalized expression for indicated transcript ENSG00000135245 normalized expression for indicated transcript ENSG00000135272 normalized expression for indicated transcript ENSG00000135362 normalized expression for indicated transcript ENSG00000135363 normalized expression for indicated transcript ENSG00000135916 normalized expression for indicated transcript ENSG00000136026 normalized expression for indicated transcript ENSG00000136193 normalized expression for indicated transcript ENSG00000136231 normalized expression for indicated transcript ENSG00000136997 normalized expression for indicated transcript ENSG00000137193 normalized expression for indicated transcript ENSG00000137198 normalized expression for indicated transcript

ENSG00000138722 normalized expression for indicated transcript ENSG00000139318 normalized expression for indicated transcript ENSG00000140287 normalized expression for indicated transcript ENSG00000144036 normalized expression for indicated transcript ENSG00000144647 normalized expression for indicated transcript ENSG00000144677 normalized expression for indicated transcript ENSG00000145476 normalized expression for indicated transcript ENSG00000145545 normalized expression for indicated transcript ENSG00000146243 normalized expression for indicated transcript ENSG00000146373 normalized expression for indicated transcript ENSG00000147044 normalized expression for indicated transcript ENSG00000147180 normalized expression for indicated transcript ENSG00000148444 normalized expression for indicated transcript ENSG00000148484 normalized expression for indicated transcript ENSG00000149131 normalized expression for indicated transcript ENSG00000150760 normalized expression for indicated transcript ENSG00000150782 normalized expression for indicated transcript ENSG00000151135 normalized expression for indicated transcript ENSG00000151208 normalized expression for indicated transcript ENSG00000151458 normalized expression for indicated transcript ENSG00000152409 normalized expression for indicated transcript ENSG00000152580 normalized expression for indicated transcript ENSG00000152767 normalized expression for indicated transcript ENSG00000152778 normalized expression for indicated transcript ENSG00000153563 normalized expression for indicated transcript ENSG00000154217 normalized expression for indicated transcript ENSG00000154743 normalized expression for indicated transcript ENSG00000154760 normalized expression for indicated transcript ENSG00000154874 normalized expression for indicated transcript ENSG00000156381 normalized expression for indicated transcript ENSG00000157107 normalized expression for indicated transcript ENSG00000157240 normalized expression for indicated transcript ENSG00000157873 normalized expression for indicated transcript ENSG00000157978 normalized expression for indicated transcript ENSG00000158691 normalized expression for indicated transcript ENSG00000159339 normalized expression for indicated transcript ENSG00000159403 normalized expression for indicated transcript

ENSG00000159788 normalized expression for indicated transcript ENSG00000160685 normalized expression for indicated transcript
ENSG00000160781 normalized expression for indicated transcript ENSG00000161509 normalized expression for indicated transcript
ENSG00000162433 normalized expression for indicated transcript
ENSG00000162614 normalized expression for indicated transcript
ENSG00000162676 normalized expression for indicated transcript ENSG00000163412 normalized expression for indicated transcript ENSG00000163702 normalized expression for indicated transcript ENSG00000163814 normalized expression for indicated transcript ENSG00000164086 normalized expression for indicated transcript ENSG00000164172 normalized expression for indicated transcript ENSG00000164442 normalized expression for indicated transcript ENSG00000165272 normalized expression for indicated transcript ENSG00000166165 normalized expression for indicated transcript ENSG00000166435 normalized expression for indicated transcript ENSG00000166987 normalized expression for indicated transcript ENSG00000167291 normalized expression for indicated transcript ENSG00000167565 normalized expression for indicated transcript ENSG00000167851 normalized expression for indicated transcript ENSG00000168026 normalized expression for indicated transcript ENSG00000168209 normalized expression for indicated transcript ENSG00000168502 normalized expression for indicated transcript ENSG00000168939 normalized expression for indicated transcript ENSG00000169203 normalized expression for indicated transcript ENSG00000169247 normalized expression for indicated transcript ENSG00000169504 normalized expression for indicated transcript ENSG00000169860 normalized expression for indicated transcript ENSG00000169991 normalized expression for indicated transcript ENSG00000170035 normalized expression for indicated transcript ENSG00000170180 normalized expression for indicated transcript ENSG00000170456 normalized expression for indicated transcript ENSG00000170522 normalized expression for indicated transcript ENSG00000170909 normalized expression for indicated transcript ENSG00000171121 normalized expression for indicated transcript ENSG00000171222 normalized expression for indicated transcript ENSG00000171476 normalized expression for indicated transcript

ENSG00000171813 normalized expression for indicated transcript ENSG00000171962 normalized expression for indicated transcript ENSG00000172197 normalized expression for indicated transcript ENSG00000172236 normalized expression for indicated transcript ENSG00000173083 normalized expression for indicated transcript ENSG00000173530 normalized expression for indicated transcript ENSG00000173926 normalized expression for indicated transcript ENSG00000174059 normalized expression for indicated transcript ENSG00000174080 normalized expression for indicated transcript ENSG00000174130 normalized expression for indicated transcript ENSG00000174738 normalized expression for indicated transcript ENSG00000175265 normalized expression for indicated transcript ENSG00000175352 normalized expression for indicated transcript ENSG00000176597 normalized expression for indicated transcript ENSG00000179222 normalized expression for indicated transcript ENSG00000179630 normalized expression for indicated transcript ENSG00000179639 normalized expression for indicated transcript ENSG00000179820 normalized expression for indicated transcript ENSG00000180096 normalized expression for indicated transcript ENSG00000180596 normalized expression for indicated transcript ENSG00000180902 normalized expression for indicated transcript ENSG00000181104 normalized expression for indicated transcript ENSG00000182866 normalized expression for indicated transcript ENSG00000182871 normalized expression for indicated transcript ENSG00000183087 normalized expression for indicated transcript ENSG00000183091 normalized expression for indicated transcript ENSG00000184371 normalized expression for indicated transcript ENSG00000185129 normalized expression for indicated transcript ENSG00000185201 normalized expression for indicated transcript ENSG00000185245 normalized expression for indicated transcript ENSG00000185291 normalized expression for indicated transcript ENSG00000185304 normalized expression for indicated transcript ENSG00000185710 normalized expression for indicated transcript ENSG00000185883 normalized expression for indicated transcript ENSG00000185986 normalized expression for indicated transcript ENSG00000186130 normalized expression for indicated transcript ENSG00000186854 normalized expression for indicated transcript

ENSG00000187010 normalized expression for indicated transcript
ENSG00000187627 normalized expression for indicated transcript
ENSG00000187653 normalized expression for indicated transcript
ENSG00000187837 normalized expression for indicated transcript
ENSG00000188002 normalized expression for indicated transcript
ENSG00000188107 normalized expression for indicated transcript
ENSG00000188211 normalized expression for indicated transcript ENSG00000188636 normalized expression for indicated transcript ENSG00000188738 normalized expression for indicated transcript ENSG00000188856 normalized expression for indicated transcript ENSG00000189164 normalized expression for indicated transcript ENSG00000189223 normalized expression for indicated transcript ENSG00000196155 normalized expression for indicated transcript ENSG00000196189 normalized expression for indicated transcript ENSG00000196415 normalized expression for indicated transcript ENSG00000196565 normalized expression for indicated transcript ENSG00000197081 normalized expression for indicated transcript ENSG00000197121 normalized expression for indicated transcript ENSG00000197253 normalized expression for indicated transcript ENSG00000197256 normalized expression for indicated transcript ENSG00000197321 normalized expression for indicated transcript ENSG00000197561 normalized expression for indicated transcript ENSG00000197728 normalized expression for indicated transcript ENSG00000197860 normalized expression for indicated transcript ENSG00000197937 normalized expression for indicated transcript ENSG00000197951 normalized expression for indicated transcript ENSG00000198743 normalized expression for indicated transcript ENSG00000198838 normalized expression for indicated transcript ENSG00000199347 normalized expression for indicated transcript ENSG00000200243 normalized expression for indicated transcript ENSG00000201801 normalized expression for indicated transcript ENSG00000203872 normalized expression for indicated transcript ENSG00000204172 normalized expression for indicated transcript ENSG00000205571 normalized expression for indicated transcript ENSG00000205593 normalized expression for indicated transcript ENSG00000208772 normalized expression for indicated transcript ENSG00000213085 normalized expression for indicated transcript

ENSG00000213261 normalized expression for indicated transcript ENSG00000213626 normalized expression for indicated transcript ENSG00000213722 normalized expression for indicated transcript ENSG00000213906 normalized expression for indicated transcript ENSG00000213967 normalized expression for indicated transcript ENSG00000214016 normalized expression for indicated transcript ENSG00000214425 normalized expression for indicated transcript ENSG00000216316 normalized expression for indicated transcript ENSG00000220008 normalized expression for indicated transcript ENSG00000223345 normalized expression for indicated transcript ENSG00000224080 normalized expression for indicated transcript ENSG00000225138 normalized expression for indicated transcript ENSG00000226471 normalized expression for indicated transcript ENSG00000227097 normalized expression for indicated transcript ENSG00000227191 normalized expression for indicated transcript ENSG00000227615 normalized expression for indicated transcript ENSG00000228049 normalized expression for indicated transcript ENSG00000229153 normalized expression for indicated transcript ENSG00000230076 normalized expression for indicated transcript ENSG00000231160 normalized expression for indicated transcript ENSG00000231721 normalized expression for indicated transcript ENSG00000233927 normalized expression for indicated transcript ENSG00000233974 normalized expression for indicated transcript ENSG00000234883 normalized expression for indicated transcript ENSG00000236876 normalized expression for indicated transcript ENSG00000237298 normalized expression for indicated transcript ENSG00000237892 normalized expression for indicated transcript ENSG00000238160 normalized expression for indicated transcript ENSG00000239437 normalized expression for indicated transcript ENSG00000241399 normalized expression for indicated transcript ENSG00000241489 normalized expression for indicated transcript ENSG00000241529 normalized expression for indicated transcript ENSG00000244405 normalized expression for indicated transcript ENSG00000247627 normalized expression for indicated transcript ENSG00000249592 normalized expression for indicated transcript ENSG00000250116 normalized expression for indicated transcript ENSG00000250251 normalized expression for indicated transcript

ENSG00000251079 normalized expression for indicated transcript
ENSG00000253210 normalized expression for indicated transcript
ENSG00000253276 normalized expression for indicated transcript
ENSG00000254415 normalized expression for indicated transcript
ENSG00000259276 normalized expression for indicated transcript
ENSG00000260727 normalized expression for indicated transcript
ENSG00000261377 normalized expression for indicated transcript
ENSG00000264885 normalized expression for indicated transcript
ENSG00000264895 normalized expression for indicated transcript
ENSG00000267136 normalized expression for indicated transcript
ENSG00000267551 normalized expression for indicated transcript
ENSG00000267702 normalized expression for indicated transcript
ENSG00000268001 normalized expression for indicated transcript
ENSG00000268573 normalized expression for indicated transcript
ENSG00000270554 normalized expression for indicated transcript
ENSG00000270562 normalized expression for indicated transcript
ENSG00000271646 normalized expression for indicated transcript
ENSG00000273018 normalized expression for indicated transcript
ENSG00000273033 normalized expression for indicated transcript

Source
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068580/

```
AUC AUC for cure prediction using mean score imputation
```


Description

This function calculates the AUC for cure prediction using the mean score imputation (MSI) method proposed by Asano et al.

Usage
AUC(object, newdata, cure_cutoff = 5, model.select = "AIC")

Arguments

object a mixturecure object resulting from curegmifs, cureem, cv_curegmifs, cv_cureem.
newdata an optional data.frame that minimally includes the incidence and/or latency variables to use for predicting the response. If omitted, the training data are used.
cure_cutoff cutoff value for cure, used to produce a proxy for the unobserved cure status; default is 5 .
model.select for models fit using curegmifs or cureem any step along the solution path can be selected. The default is model.select = "AIC" which calculates the predicted values using the coefficients from the model having the lowest AIC. Other options are model.select $=$ "mAIC" for the modified AIC, model.select $=$ "cAIC" for the corrected AIC, model. select = "BIC", model. select = "mBIC" for the modified BIC, model. select $=$ "EBIC" for the extended BIC, model. select $=$ "logLik" for the step that maximizes the log-likelihood, or any numeric value from the solution path. This option has no effect for objects fit using cv_curegmifs or cv_cureem.

Value

Returns the AUC value for cure prediction using the mean score imputation (MSI) method.

References

Asano, J., Hirakawa, H., Hamada, C. (2014) Assessing the prediction accuracy of cure in the Cox proportional hazards cure model: an application to breast cancer data. Pharmaceutical Statistics, 13:357-363.

See Also

concordance_mcm

Examples

```
library(survival)
set.seed(1234)
temp <- generate_cure_data(N = 100, J = 10, nTrue = 10, A = 1.8)
training <- temp$Training
testing <- temp$Testing
fit <- curegmifs(Surv(Time, Censor) ~ .,
                data = training, x.latency = training,
                model = "weibull", thresh = 1e-4, maxit = 2000,
                epsilon = 0.01, verbose = FALSE)
AUC(fit)
AUC(fit, newdata = testing)
```


Description

coef.mixturecure is a generic function which extracts the model coefficients from a fitted mixture cure model object fit using curegmifs, cureem, cv_curegmifs, or cv_cureem.

Usage

\#\# S3 method for class 'mixturecure'
coef(object, model.select = "AIC", ...)

Arguments

object a mixturecure object resulting from curegmifs, cureem, cv_curegmifs, or cv_cureem.
model.select for models fit using curegmifs or cureem any step along the solution path can be selected. The default is model.select = "AIC" which calculates the predicted values using the coefficients from the model having the lowest AIC. Other options are model.select $=$ "mAIC" for the modified AIC, model.select $=$ "cAIC" for the corrected AIC, model. select = "BIC", model. select = "mBIC" for the modified BIC, model. select = "EBIC" for the extended BIC, model. select $=$ "logLik" for the step that maximizes the log-likelihood, or any numeric value from the solution path. This option has no effect for objects fit using cv_curegmifs or cv_cureem.
... other arguments.

Value

a list of estimated parameters extracted from the model object using the model selection criterion

See Also

curegmifs, cureem, summary.mixturecure, plot.mixturecure, predict.mixturecure

Examples

```
library(survival)
set.seed(1234)
temp <- generate_cure_data(N = 100, J = 10, nTrue = 10, A = 1.8)
training <- temp$Training
fit <- curegmifs(Surv(Time, Censor) ~ .,
    data = training, x.latency = training,
    model = "weibull", thresh = 1e-4, maxit = 2000, epsilon = 0.01,
    verbose = FALSE)
coef(fit)
```


Description

This function calculates the C-statistic using the cure status weighting (CSW) method proposed by Asano and Hirakawa.

Usage

concordance_mcm(object, newdata, cure_cutoff $=5$, model.select = "AIC")

Arguments

object a mixturecure object resulting from curegmifs, cureem, cv_curegmifs, cv_cureem.
newdata an optional data.frame that minimally includes the incidence and/or latency variables to use for predicting the response. If omitted, the training data are used.
cure_cutoff cutoff value for cure, used to produce a proxy for the unobserved cure status; default is 5 .
model.select for models fit using curegmifs or cureem any step along the solution path can be selected. The default is model.select = "AIC" which calculates the predicted values using the coefficients from the model having the lowest AIC. Other options are model.select $=$ "mAIC" for the modified AIC, model.select = "cAIC" for the corrected AIC, model. select = "BIC", model. select = "mBIC" for the modified BIC, model. select = "EBIC" for the extended BIC, model. select $=$ "logLik" for the step that maximizes the log-likelihood, or any numeric value from the solution path. This option has no effect for objects fit using cv_curegmifs or cv_cureem.

Value

value of C -statistic for the cure models.

References

Asano, J. and Hirakawa, H. (2017) Assessing the prediction accuracy of a cure model for censored survival data with long-term survivors: Application to breast cancer data. Journal of Biopharmaceutical Statistics, 27:6, 918-932.

See Also

AUC

Examples

```
library(survival)
set.seed(1234)
temp <- generate_cure_data(N = 100, J = 10, nTrue = 10, A = 1.8)
training <- temp$Training
testing <- temp$Testing
fit <- curegmifs(Surv(Time, Censor) ~ .,
    data = training, x.latency = training,
    model = "weibull", thresh = 1e-4, maxit = 2000,
    epsilon = 0.01, verbose = FALSE)
concordance_mcm(fit)
concordance_mcm(fit, newdata = testing)
```


Description

Fits a penalized parametric and semi-parametric mixture cure model (MCM) using the E-M algorithm with user-specified penalty parameters. The lasso (L1), MCP, and SCAD penalty is supported for the Cox MCM while only lasso is currently supported for parametric MCMs.

Usage

cureem(
formula,
data,
subset,
x.latency $=$ NULL,
model = "cox",
penalty = "lasso",
penalty.factor.inc = NULL,
penalty.factor.lat $=$ NULL,
thresh = 0.001,
scale = TRUE,
maxit = NULL,
inits = NULL,
lambda.inc = 0.1,
lambda.lat = 0.1,
gamma.inc $=3$,
gamma.lat $=3$,
...
)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The response must be a survival
object as returned by the Surv function while the variables on the right side of the formula are the covariates that are included in the incidence portion of the model.

data	a data.frame in which to interpret the variables named in the formula or in the subset argument.
subset	an optional expression indicating which subset of observations to be used in the fitting process, either a numeric or factor variable should be used in subset, not a character variable. All observations are included by default.
x.latency	specifies the variables to be included in the latency portion of the model and can be either a matrix of predictors, a model formula with the right hand side speci- fying the latency variables, or the same data.frame passed to the data parameter. Note that when using the model formula syntax for x. latency it cannot handle x.latency $=\sim$
model	type of regression model to use for the latency portion of mixture cure model. Can be "cox", "weibull", or "exponential" (default is "cox").
penalty	
penalty.factor. inc of penalty function. Can be "lasso", "MCP", or "SCAD" (default is "lasso").	

vector of binary indicators representing the penalty to apply to each incidence coefficient: 0 implies no shrinkage and 1 implies shrinkage. If not supplied, 1 is applied to all incidence variables.
penalty.factor.lat
vector of binary indicators representing the penalty to apply to each latency coefficient: 0 implies no shrinkage and 1 implies shrinkage. If not supplied, 1 is applied to all latency variables.
thresh small numeric value. The iterative process stops when the differences between successive expected penalized complete-data log-likelihoods for both incidence and latency components are less than this specified level of tolerance (default is $10^{\wedge}-3$).
scale logical, if TRUE the predictors are centered and scaled.
maxit integer specifying the maximum number of passes over the data for each lambda. If not specified, 100 is applied when penalty = "lasso" and 1000 is applied when penalty = "MCP" or penalty = "SCAD".
inits an optional list specifiying the initial value for the incidence intercept (itct), a numeric vector for the unpenalized incidence coefficients ($\mathrm{b}_{-} u$), and a numeric vector for unpenalized latency coefficients (beta_u). For parametric models, it should also include a numeric value for the rate parameter (lambda) when model = "weibull" or model = "exponential", and a numeric value for the shape parameter (alpha) when model = "weibull". When model = "cox", it should also include a numeric vector for the latency survival probabilities $S_{u}\left(t_{i} \mid w_{i}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{~N}$ (survprob). Penalized coefficients are initialized to zero. If inits is not specified or improperly specified, initialization is automatically provided by the function.
lambda.inc numeric value for the penalization parameter λ for variables in the incidence portion of the model.
lambda.lat numeric value for the penalization parameter λ for variables in the latency portion of the model.
gamma.inc numeric value for the penalization parameter γ for variables in the incidence portion of the model when penalty = "MCP" or penalty = "SCAD" (default is $3)$.
gamma.lat numeric value for the penalization parameter γ for variables in the latency portion of the model when penalty = "MCP" or penalty = "SCAD" (default is 3).
additional arguments.

Value

b_path	Matrix representing the solution path of the coefficients in the incidence portion of the model. Row is step and column is variable. Matrix representing the solution path of lthe coefficients in the latency portion of the model. Row is step and column is variable. Vector representing the solution path of the intercept in the incidence portion of the model.
beta_path	
b0_path	Vector representing the expected penalized complete-data log-likelihood for the incidence portion of the model for each step in the solution path.
logLik.inc	
logLik.lat	Vector representing the expected penalized complete-data log-likelihood for the latency portion of the model for each step in the solution path.
x.incidence	Matrix representing the design matrix of the incidence predictors.
x.latency	Matrix representing the design matrix of the latency predictors. Vector representing the survival object response as returned by the Surv function
model	Character string indicating the type of regression model used for the latency portion of mixture cure model ("weibull" or "exponential").
scale	Logical value indicating whether the predictors were centered and scaled. method\quadCharacter string indicating the EM alogoritm was used in fitting the mixture cure model.
rate_path	Vector representing the solution path of the rate parameter for the Weibull or exponential density in the latency portion of the model.
alpha_path	Vector representing the solution path of the shape parameter for the Weibull density in the latency portion of the model. the matched call.

References

Archer, K. J., Fu, H., Mrozek, K., Nicolet, D., Mims, A. S., Uy, G. L., Stock, W., Byrd, J. C., Hiddemann, W., Braess, J., Spiekermann, K., Metzeler, K. H., Herold, T., Eisfeld, A.-K. (2024) Identifying long-term survivors and those at higher or lower risk of relapse among patients with cytogenetically normal acute myeloid leukemia using a high-dimensional mixture cure model. Journal of Hematology \& Oncology, 17:28.

See Also

```
cv_cureem
```


Examples

```
library(survival)
set.seed(1234)
temp <- generate_cure_data(N = 80, J = 100, nTrue = 10, A = 1.8)
training <- temp$Training
fit <- cureem(Surv(Time, Censor) ~ ., data = training, x.latency = training,
    model = "cox", penalty = "lasso",
    lambda.inc = 0.1, lambda.lat = 0.1, gamma.inc = 6, gamma.lat = 10)
```

curegmifs \quad Fit penalized parametric mixture cure model using the GMIFS algo-
rithm

Description

Fits a penalized Weibull or exponential mixture cure model using the generalized monotone incremental forward stagewise (GMIFS) algorithm and yields solution paths for parameters in the incidence and latency portions of the model.

Usage

curegmifs(
formula,
data,
subset,
x. latency $=$ NULL,
model = "weibull",
penalty.factor.inc $=$ NULL, penalty.factor.lat $=$ NULL, epsilon = 0.001, thresh $=1 \mathrm{e}-05$, scale = TRUE, maxit $=10000$, inits = NULL, verbose = TRUE,)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The response must be a survival object as returned by the Surv function while the variables on the right side of the formula are the covariates that are included in the incidence portion of the model.

data	a data.frame in which to interpret the variables named in the formula or in the subset argument.
subset	an optional expression indicating which subset of observations to be used in the fitting process, either a numeric or factor variable should be used in subset, not a character variable. All observations are included by default.
$x . l a t e n c y$	specifies the variables to be included in the latency portion of the model and can be either a matrix of predictors, a model formula with the right hand side specifying the latency variables, or the same data.frame passed to the data parameter. Note that when using the model formula syntax for x. latency it cannot handle x. latency $=\sim$. .
model	type of regression model to use for the latency portion of mixture cure model. Can be "weibull" or "exponential"; default is "weibull".
penalty.factor.inc	
	vector of binary indicators representing the penalty to apply to each incidence coefficient: 0 implies no shrinkage and 1 implies shrinkage. If not supplied, 1 is applied to all incidence variables.
penalty.factor.lat	
	vector of binary indicators representing the penalty to apply to each latency coefficient: 0 implies no shrinkage and 1 implies shrinkage. If not supplied, 1 is applied to all latency variables.
epsilon	small numeric value reflecting the incremental value used to update a coefficient at a given step (default is 0.001).
thresh	small numeric value. The iterative process stops when the differences between successive expected penalized complete-data log-likelihoods for both incidence and latency components are less than this specified level of tolerance (default is $10^{\wedge}-5$).
scale	logical, if TRUE the predictors are centered and scaled.
maxit	integer specifying the maximum number of steps to run in the iterative algorithm (default is $10^{\wedge} 4$).
inits	an optional list specifiying the initial value for the incidence intercept (itct), a numeric vector for the unpenalized incidence coefficients (b_u), and a numeric vector for unpenalized latency coefficients (beta_u), a numeric value for the rate parameter (lambda), and a numeric value for the shape parameter (alpha) when model = "weibull". If not supplied or improperly supplied, initialization is automatically provided by the function.
verbose	logical, if TRUE running information is printed to the console (default is FALSE)
	additional arguments.

Value

b_path
beta_path Matrix representing the solution path of lthe coefficients in the latency portion of the model. Row is step and column is variable.
\(\left.$$
\begin{array}{ll}\text { b0_path } & \begin{array}{l}\text { Vector representing the solution path of the intercept in the incidence portion of } \\
\text { the model. }\end{array} \\
\text { rate_path } & \begin{array}{l}\text { Vector representing the solution path of the rate parameter for the Weibull or } \\
\text { exponential density in the latency portion of the model. }\end{array} \\
\text { logLik } & \text { Vector representing the log-likelihood for each step in the solution path. } \\
\text { x.incidence } & \text { Matrix representing the design matrix of the incidence predictors. } \\
\text { x.latency } & \begin{array}{l}\text { Matrix representing the design matrix of the latency predictors. }\end{array}
$$

y

moctor representing the survival object response as returned by the Surv function\end{array}\right]\)| Character string indicating the type of regression model used for the latency |
| :--- |
| portion of mixture cure model ("weibull" or "exponential"). |

References

Fu, H., Nicolet, D., Mrozek, K., Stone, R. M., Eisfeld, A. K., Byrd, J. C., Archer, K. J. (2022) Controlled variable selection in Weibull mixture cure models for high-dimensional data. Statistics in Medicine, 41(22), 4340-4366.

See Also

cv_curegmifs

Examples

```
library(survival)
set.seed(1234)
temp <- generate_cure_data(N = 100, J = 10, nTrue = 10, A = 1.8)
training <- temp$Training
fit <- curegmifs(Surv(Time, Censor) ~ .,
        data = training, x.latency = training,
        model = "weibull", thresh = 1e-4, maxit = 2000, epsilon = 0.01,
        verbose = FALSE)
```

cure_estimate Estimate cured fraction

Description

Estimates the cured fraction using a Kaplan-Meier fitted object.

Usage

cure_estimate(object)

Arguments

object a survfit object.

Value

estimated proportion of cured observations

See Also

survfit, sufficient_fu_test, nonzerocure_test

Examples

library(survival)
set.seed(1234)
temp <- generate_cure_data($\mathrm{N}=100, \mathrm{~J}=10$, nTrue $=10, \mathrm{~A}=1.8$)
training <- temp\$Training
km.fit <- survfit(Surv(Time, Censor) ~ 1, data = training)
cure_estimate(km.fit)
cv_cureem
Fit penalized mixture cure model using the E-M algorithm with crossvalidation for parameter tuning

Description

Fits a penalized parametric and semi-parametric mixture cure model (MCM) using the E-M algorithm with with k-fold cross-validation for parameter tuning. The lasso (L1), MCP and SCAD penalty are supported for the Cox MCM while only lasso is currently supported for parametric MCMs. When FDR controlled variable selection is used, the model-X knockoffs method is applied and indices of selected variables are returned.

Usage

cv_cureem(
formula,
data,
subset,
x.latency = NULL,
model = "cox",
penalty = "lasso",
penalty.factor.inc = NULL,
penalty.factor.lat = NULL,
fdr.control = FALSE,

```
    fdr = 0.2,
    grid.tuning = FALSE,
    thresh = 0.001,
    scale = TRUE,
    maxit = NULL,
    inits = NULL,
    lambda.inc.list = NULL,
    lambda.lat.list = NULL,
    nlambda.inc = NULL,
    nlambda.lat = NULL,
    gamma.inc = 3,
    gamma.lat = 3,
    lambda.min.ratio.inc = 0.1,
    lambda.min.ratio.lat = 0.1,
    n_folds = 5,
    measure.inc = "c",
    one.se = FALSE,
    cure_cutoff = 5,
    parallel = FALSE,
    seed = NULL,
    verbose = TRUE,
)
```


Arguments

formula an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. The response must be a survival object as returned by the Surv function while the variables on the right side of the formula are the covariates that are included in the incidence portion of the model.
data a data.frame in which to interpret the variables named in the formula or in the subset argument.
subset an optional expression indicating which subset of observations to be used in the fitting process, either a numeric or factor variable should be used in subset, not a character variable. All observations are included by default.
x.latency specifies the variables to be included in the latency portion of the model and can be either a matrix of predictors, a model formula with the right hand side specifying the latency variables, or the same data.frame passed to the data parameter. Note that when using the model formula syntax for x. latency it cannot handle x. latency $=\sim$..
model type of regression model to use for the latency portion of mixture cure model. Can be "cox", "weibull", or "exponential" (default is "cox").
penalty type of penalty function. Can be "lasso", "MCP", or "SCAD" (default is "lasso").
penalty.factor.inc
vector of binary indicators representing the penalty to apply to each incidence coefficient: 0 implies no shrinkage and 1 implies shrinkage. If not supplied, 1 is applied to all incidence variables.

	vector of binary indicators representing the penalty to apply to each latency coefficient: 0 implies no shrinkage and 1 implies shrinkage. If not supplied, 1 is applied to all latency variables.
fdr.control	logical, if TRUE, model-X knockoffs are used for FDR-controlled variable selection and indices of selected variables are returned (default is FALSE).
$f d r$	numeric value in $(0,1)$ range specifying the target FDR level to use for variable selection when fdr. control=TRUE (default is 0.2).
grid.tuning	logical, if TRUE a 2-D grid tuning approach is used to select the optimal pair of λ_{b} and λ_{β} penalty parameters for the incidence and latency portions of the model, respectively. Otherwise the λ_{b} and λ_{β} are selected from a 1-D sequence and are equal to one another (default is FALSE).
thresh	small numeric value. The iterative process stops when the differences between successive expected penalized complete-data log-likelihoods for both incidence and latency components are less than this specified level of tolerance (default is $10^{\wedge}-3$).
scale	logical, if TRUE the predictors are centered and scaled.
maxit	maximum number of passes over the data for each lambda. If not specified, 100 is applied when penalty = "lasso" and 1000 is applied when penalty = "MCP" or penalty = "SCAD".
inits	an optional list specifiying the initial value for the incidence intercept (itct), a numeric vector for the unpenalized incidence coefficients (b_u), and a numeric vector for unpenalized latency coefficients (beta_u). For parametric models, it should also include a numeric value for the rate parameter (lambda) when model = "weibull" or model = "exponential", and a numeric value for the shape parameter (alpha) when model = "weibull". When model = "cox", it should also include a numeric vector for the latency survival probabilities $S_{u}\left(t_{i} \mid w_{i}\right)$ for $\mathrm{i}=1, \ldots, \mathrm{~N}$ (survprob). Penalized coefficients are initialized to zero. If inits is not specified or improperly specified, initialization is automatically provided by the function.
lambda.inc.list	
	a numeric vector used to search for the optimal λ_{b} tuning parameter. If not supplied, the function computes a λ_{b} sequence based on nlambda. inc and lambda.min. ratio.inc If grid. tuning=FALSE, the same sequence should be used for both λ_{b} and λ_{β}.
lambda.lat.list	
	a numeric vector used to search for the optimal λ_{β} tuning parameter. If not supplied, the function computes a λ_{β} sequence based on nlambda.lat and lambda.min.ratio.lat. If grid.tuning=FALSE, the same sequence should be used for both λ_{b} and λ_{β}.
nlambda.inc	an integer specifying the number of values to search for the optimal λ_{b} tuning parameter; default is 10 if grid. tuning=TRUE and 50 otherwise.
nlambda.lat	an integer specifying the number of values to search for the optimal λ_{β} tuning parameter; default is 10 if grid. tuning=TRUE and 50 otherwise.
gamma.inc	numeric value for the penalization parameter γ for variables in the incidence portion of the model when penalty $=$ "MCP" or penalty = "SCAD" (default is 3).

gamma.lat numeric value for the penalization parameter γ for variables in the latency portion of the model when penalty = "MCP" or penalty = "SCAD" (default is 3).
lambda.min.ratio.inc
numeric value in $(0,1)$ representing the smallest value for λ_{b} as a fraction of lambda.max.inc, the data-derived entry value at which essentially all penalized variables in the incidence portion of the model have a coefficient estimate of 0 (default is 0.1).
lambda.min.ratio.lat
numeric value in (0.1) representing the smallest value for λ_{β} as a fraction of lambda.max.lat, the data-derived entry value at essentially all penalized variables in the latency portion of the model have a coefficient estimate of 0 (default is 0.1).
n_folds an integer specifying the number of folds for the k-fold cross-valiation procedure (default is 5).
measure.inc character string specifying the evaluation criterion used in selecting the optimal λ_{b}. Can be "c" or "auc"; default is "c". If measure.inc=" c ", the C-statistic using the cure status weighting (CSW) method proposed by Asano and Hirakawa (2017) is used to select both λ_{b} and λ_{β}. If measure.inc="auc", the AUC for cure prediction using the mean score imputation (MSI) method proposed by Asano et al. (2014) is used to select λ_{b} while the C-statistic with CSW is used for λ_{β}.
one.se logical, if TRUE then the one standard error rule is applied for selecting the optimal parameters. The one standard error rule selects the most parsimonious model having evaluation criterion no more than one standard error worse than that of the best evaluation criterion (default is FALSE).
cure_cutoff numeric value representing the cutoff time value that represents subjects not experiencing the event by this time are cured. This value is used to produce a proxy for the unobserved cure status when calculating C-statistic and AUC (default is 5 representing 5 years). Users should be careful to note the time scale of their data and adjust this according to the time scale and clinical application.
parallel logical. If TRUE, parallel processing is performed for K-fold CV using foreach and the doMC package is required.
seed optional integer representing the random seed. Setting the random seed fosters reproducibility of the results.
verbose logical, if TRUE running information is printed to the console (default is FALSE). additional arguments.
Value

b0	Estimated intercept for the incidence portion of the model.
b	Estimated coefficients for the incidence portion of the model.
beta	Estimated coefficients for the latency portion of the model.
alpha	Estimated shape parameter if the Weibull model is fit.
rate	Estimated rate parameter if the Weibull or exponential model is fit.

```
logLik.inc Expected penalized complete-data log-likelihood for the incidence portion of the model.
logLik.lat Expected penalized complete-data log-likelihood for the latency portion of the model.
selected.lambda.inc
Value of \(\lambda_{b}\) selected using cross-validation. NULL when fdr.control is TRUE.
selected.lambda.lat
Value of \(\lambda_{\beta}\) selected using cross-validation. NULL when fdr.control is TRUE.
\(\max . c \quad\) Maximum C-statistic achieved.
max.auc Maximum AUC for cure prediction achieved; only output when measure.inc="auc".
selected.index.inc
Indices of selected variables for the incidence portion of the model when fdr. control=TRUE. If no variables are selected, int(0) will be returned.
selected.index.lat
Indices of selected variables for the latency portion of the model when fdr. control=TRUE. If no variables are selected, int (0) will be returned.
call the matched call.
```


References

Archer, K. J., Fu, H., Mrozek, K., Nicolet, D., Mims, A. S., Uy, G. L., Stock, W., Byrd, J. C., Hiddemann, W., Braess, J., Spiekermann, K., Metzeler, K. H., Herold, T., Eisfeld, A.-K. (2024) Identifying long-term survivors and those at higher or lower risk of relapse among patients with cytogenetically normal acute myeloid leukemia using a high-dimensional mixture cure model. Journal of Hematology \& Oncology, 17:28.

See Also

cureem

Examples

```
library(survival)
set.seed(1234)
temp <- generate_cure_data(N = 200, J = 25, nTrue = 5, A = 1.8)
training <- temp$Training
fit.cv <- cv_cureem(Surv(Time, Censor) ~ ., data = training,
    x.latency = training, fdr.control = FALSE,
    grid.tuning = FALSE, nlambda.inc = 10, nlambda.lat = 10,
    n_folds = 2, seed = 23, verbose = TRUE)
fit.cv.fdr <- cv_cureem(Surv(Time, Censor) ~ ., data = training,
    x.latency = training, model = "weibull", penalty = "lasso",
    fdr.control = TRUE, grid.tuning = FALSE, nlambda.inc = 10,
    nlambda.lat = 10, n_folds = 2, seed = 23, verbose = TRUE)
```

```
cv_curegmifs
```

Fit a penalized parametric mixture cure model using the GMIFS algorithm with cross-validation for model selection

Description

Fits a penalized Weibull or exponential mixture cure model using the generalized monotone incremental forward stagewise (GMIFS) algorithm with k-fold cross-validation to select the optimal iteration step along the solution path. When FDR controlled variable selection is used, the model-X knockoffs method is applied and indices of selected variables are returned.

Usage

cv_curegmifs(formula, data, subset, x.latency = NULL, model = "weibull", penalty.factor.inc = NULL, penalty.factor.lat $=$ NULL, fdr.control = FALSE, $f d r=0.2$,
epsilon = 0.001,
thresh $=1 \mathrm{e}-05$,
scale $=$ TRUE,
maxit $=10000$,
inits = NULL,
n_folds = 5,
measure.inc = "c",
one.se = FALSE,
cure_cutoff = 5,
parallel = FALSE,
seed $=$ NULL,
verbose $=$ TRUE,
...
)

Arguments

$$
\begin{aligned}
& \text { formula } \begin{array}{l}
\text { an object of class "formula" (or one that can be coerced to that class): a sym- } \\
\text { bolic description of the model to be fitted. The response must be a survival } \\
\text { object as returned by the Surv function while the variables on the right side of } \\
\text { the formula are the covariates that are included in the incidence portion of the } \\
\text { model. } \\
\text { data } \\
\text { a data.frame in which to interpret the variables named in the formula or in the } \\
\text { subset argument. }
\end{array}
\end{aligned}
$$

subset	an optional expression indicating which subset of observations to be used in the fitting process, either a numeric or factor variable should be used in subset, not a character variable. All observations are included by default. specifies the variables to be included in the latency portion of the model and can be either a matrix of predictors, a model formula with the right hand side speci- fying the latency variables, or the same data.frame passed to the data parameter. Note that when using the model formula syntax for x.latency it cannot handle x.latency $=\sim$ type of regression model to use for the latency portion of mixture cure model. Can be "weibull" or "exponential"; default is "weibull".
model	penalty.factor. inc
vector of binary indicators representing the penalty to apply to each incidence	
coefficient: 0 implies no shrinkage and 1 implies shrinkage. If not supplied, is is	
applied to all incidence variables.	

$$
\begin{array}{ll}
\text { one.se } & \begin{array}{l}
\text { logical, if TRUE then the one standard error rule is applied for selecting the } \\
\text { optimal parameters. The one standard error rule selects the most parsimonious } \\
\text { model having evaluation criterion no more than one standard error worse than } \\
\text { that of the best evaluation criterion (default is FALSE). }
\end{array} \\
\text { cure_cutoff } & \begin{array}{l}
\text { numeric value representing the cutoff time value that represents subjects not } \\
\text { experiencing the event by this time are cured. This value is used to produce } \\
\text { a proxy for the unobserved cure status when calculating C-statistic and AUC } \\
\text { (default is 5 representing 5 years). Users should be careful to note the time scale } \\
\text { of their data and adjust this according to the time scale and clinical application. }
\end{array} \\
\text { parallel } & \begin{array}{l}
\text { logical. If TRUE, parallel processing is performed for K-fold CV using foreach } \\
\text { and the doMC package is required. }
\end{array} \\
\text { seed } & \begin{array}{l}
\text { optional integer representing the random seed. Setting the random seed fosters } \\
\text { reproducibility of the results. }
\end{array} \\
\text { verbose } & \begin{array}{l}
\text { logical, if TRUE running information is printed to the console (default is FALSE). } \\
\text { additional arguments. }
\end{array}
\end{array}
$$

Value

b0 Estimated intercept for the incidence portion of the model.
b Estimated coefficients for the incidence portion of the model.
beta Estimated coefficients for the latency portion of the model.
alpha Estimated shape parameter if the Weibull model is fit.
rate Estimated rate parameter if the Weibull or exponential model is fit.
logLik Log-likelihood value.
selected.step.inc
Iteration step selected for the incidence portion of the model using cross-validation. NULL when fdr.control is TRUE.
selected.step.lat
Iteration step selected for the latency portion of the model using cross-validation.
NULL when fdr.control is TRUE.
max.c Maximum C-statistic achieved
max.auc Maximum AUC for cure prediction achieved; only output when measure.inc="auc".
selected.index.inc
Indices of selected variables for the incidence portion of the model when fdr. control=TRUE. If none selected, int(0) will be returned.
selected.index.lat
Indices of selected variables for the latency portion of the model when fdr. control=TRUE.
If none selected, int(0) will be returned.
call the matched call.

References

Fu, H., Nicolet, D., Mrozek, K., Stone, R. M., Eisfeld, A. K., Byrd, J. C., Archer, K. J. (2022) Controlled variable selection in Weibull mixture cure models for high-dimensional data. Statistics in Medicine, 41(22), 4340-4366.

See Also

$$
\begin{aligned}
& \text { curegmifs } \\
& \text { curegmifs }
\end{aligned}
$$

Examples

```
    library(survival)
    set.seed(123)
    temp <- generate_cure_data(N = 100, J = 15, nTrue = 3, A = 1.8, rho = 0.2)
    training <- temp$Training
    fit.cv <- cv_curegmifs(Surv(Time, Censor) ~ ., data = training,
        x.latency = training, fdr.control = FALSE,
        maxit = 450, epsilon = 0.01,
        n_folds = 2, seed = 23, verbose = TRUE)
```

 generate_cure_data Simulate data under a mixture cure model

Description

Simulate data under a mixture cure model

Usage

```
generate_cure_data(
        N = 400,
        J = 500,
        nonp = 2,
        train.prop = 3/4,
        nTrue = 10,
        A = 1,
        rho = 0.5,
        itct_mean = 0.5,
        cens_ub = 20,
        alpha = 1,
        lambda = 2,
        same_signs = FALSE,
        model = "weibull"
    )
```


Arguments

N
J
an integer denoting the total sample size.
an integer denoting the number of penalized predictors which is the same for both the incidence and latency portions of the model.

nonp	an integer less than \mathbf{J} denoting the number of unpenalized predictors (which is the same for both the incidence and latency portions of the model.
train.prop	a numeric value in 0,1 representing the fraction of N to be used in forming the Training dataset.
nTrue	an integer denoting the number of variables truly associated with the outcome (i.e., the number of covariates with nonzero parameter values) among the penalized predictors.
A	a numeric value denoting the effect size which is the same for both the incidence and latency portions of the model.
rho	a numeric value in 0,1 representing the correlation between adjacent covariates in the same block. See details below.
itct_mean	a numeric value representing the expectation of the incidence intercept which controls the cure rate.
cens_ub	a numeric value representing the upper bound on the censoring time distribition which follows a uniform distribution on 0 , cens_ub.
alpha	a numeric value representing the shape parameter in the Weibull density.
lambda	a numeric value representing the rate parameter in the Weibull density.
same_signs	logical, if TRUE the incidence and latency coefficients have the same signs.
model	type of regression model to use for the latency portion of mixture cure model. Can be "weibull", "GG", "Gompertz", "nonparametric", or "GG_baseline".

Value

Training Training data.frame which includes Time, Censor, and covariates.
Testing Testing data.frame which includes Time, Censor, and covariates.
parameters
A list including: the indices of true incidence signals (nonzero_b), indices of true latency signals (nonzero_beta), unpenalized incidence parameter values (b_u), unpenalized latency parameter values (beta_u), parameter values for the true incidence signals among penalized covariates (b_p_nz), parameter values for the true latency signals among penalized covariates (beta_p_nz), parameter value for the incidence intercept (itct)

Examples

```
library(survival)
set.seed(1234)
data <- generate_cure_data(N = 200, J = 50, nTrue = 10, A = 1.8, rho = 0.2)
training <- data$Training
testing <- data$Testing
fit <- cureem(Surv(Time, Censor) ~ ., data = training,
    x.latency = training, model = "cox", penalty = "lasso",
        lambda.inc = 0.05, lambda.lat = 0.05,
        gamma.inc = 6, gamma.lat = 10)
```


Description

Tests the null hypothesis that the proportion of observations susceptible to the event $=1$ against the alternative that the proportion of observations susceptible to the event is <1. If the null hypothesis is rejected, there is a significant cured fraction.

Usage

nonzerocure_test(object, Reps $=1000$, seed $=$ NULL, plot $=$ FALSE, B $=$ NULL)

Arguments

object	a survfit object.
Reps	number of simulations on which to base the p-value $($ default $=1000)$.
seed	optional random seed.

plot logical. If TRUE a histogram of the estimated susceptible proportions over all simulations is produced.
B optional. If specified the maximum observed time for the uniform distribution for generating the censoring times. If not specified, an exponential model is used for generating the censoring times (default).

```
Value
    proportion_susceptible
    estimated proportion of susceptibles
    proportion_cured
    estimated proportion of those cured
    p.value p-value testing the null hypothesis that the proportion of susceptibles =1 (cured
    fraction =0) against the alternative that the proportion of susceptibles < 1 (non-
    zero cured fraction)
    time_95_percent_of_events
            estimated time at which 95% of events should have occurred
```


References

Maller, R. A. and Zhou, X. (1996) Survival Analysis with Long-Term Survivors. John Wiley \& Sons.

See Also

```
survfit, cure_estimate, sufficient_fu_test
```


Examples

```
library(survival)
set.seed(1234)
temp <- generate_cure_data(N = 100, J = 10, nTrue = 10, A = 1.8)
training <- temp$Training
km.fit <- survfit(Surv(Time, Censor) ~ 1, data = training)
nonzerocure_test(km.fit)
```

```
plot.mixturecure Plot fitted mixture cure model
```


Description

This function plots either the coefficient path, the AIC, the cAIC, the BIC, or the log-likelihood for a fitted curegmifs or cureem object. This function produces a lollipop plot of the coefficient estimates for a fitted cv_curegmifs or cv_cureem object.

Usage

```
## S3 method for class 'mixturecure'
plot(x, type = "trace", xlab = NULL, ylab = NULL, main = NULL, ...)
```


Arguments

x
type default is "trace" which plots the coefficient path for the fitted object. Also available are "AIC", "cAIC", "mAIC", "BIC", "mBIC", "EBIC", and "logLik". This option has no effect for objects fit using cv_curegmifs or cv_cureem.
$x l a b \quad a \quad$ default x-axis label will be used which can be changed by specifying a userdefined x -axis label.
ylab a default y-axis label will be used which can be changed by specifying a userdefined y-axis label.
main a default main title will be used which can be changed by specifying a userdefined main title. This option is not used for cv_curegmifs or cv_cureem fitted objects.
.. other arguments.

Value

this function has no returned value but is called for its side effects

See Also

curegmifs, cureem, coef.mixturecure, summary.mixturecure, predict.mixturecure

Examples

```
library(survival)
set.seed(1234)
temp <- generate_cure_data(N = 100, J = 10, nTrue = 10, A = 1.8)
training <- temp$Training
fit <- curegmifs(Surv(Time, Censor) ~ .,
    data = training, x.latency = training,
    model = "weibull", thresh = 1e-4, maxit = 2000,
    epsilon = 0.01, verbose = FALSE)
plot(fit)
```

predict.mixturecure Predicted probabilities for susceptibles, linear predictor for latency, and risk class for latency for mixture cure fit

Description

This function returns a list the includes the predicted probabilities for susceptibles as well as the linear predictor for the latency distribution and a dichotomous risk for latency for a curegmifs, cureem, cv_curegmifs or cv_cureem fitted object.

Usage

\#\# S3 method for class 'mixturecure'
predict(object, newdata, model.select = "AIC", ...)

Arguments

object a mixturecure object resulting from curegmifs, cureem, cv_curegmifs, cv_cureem.
newdata an optional data.frame that minimally includes the incidence and/or latency variables to use for predicting the response. If omitted, the training data are used.
model.select for models fit using curegmifs or cureem any step along the solution path can be selected. The default is model.select = "AIC" which calculates the predicted values using the coefficients from the model having the lowest AIC. Other options are model.select $=$ "mAIC" for the modified AIC, model.select $=$ "cAIC" for the corrected AIC, model. select = "BIC", model. select = "mBIC" for the modified BIC, model. select = "EBIC" for the extended BIC, model. select $=$ "logLik" for the step that maximizes the log-likelihood, or any numeric value from the solution path. This option has no effect for objects fit using cv_curegmifs or cv_cureem.
\ldots other arguments

Value

p. uncured a vector of probabilities from the incidence portion of the fitted model representing the P (uncured).
linear.latency a vector for the linear predictor from the latency portion of the model.
latency.risk a dichotomous class representing low (below the median) versus high risk for the latency portion of the model.

See Also

curegmifs, cureem, coef.mixturecure, summary.mixturecure, plot.mixturecure

Examples

```
library(survival)
set.seed(1234)
temp <- generate_cure_data(N = 100, J = 10, nTrue = 10, A = 1.8)
training <- temp$Training
fit <- curegmifs(Surv(Time, Censor) ~ .,
    data = training, x.latency = training,
    model = "weibull", thresh = 1e-4, maxit = 2000,
    epsilon = 0.01, verbose = FALSE)
predict.train <- predict(fit)
names(predict.train)
testing <- temp$Testing
predict.test <- predict(fit, newdata = testing)
```

print.mixturecure
Print the contents of a mixture cure fitted object

Description

This function prints the names of the list objects from a curegmifs, cureem, cv_cureem, or cv_curegmifs fitted model.

Usage

\#\# S3 method for class 'mixturecure'
print(x, ...)

Arguments

x a mixturecure object resulting from curegmifs, cureem, cv_cureem, or cv_curegmifs. ... other arguments.

Value

names of the objects in a mixturecure object fit using cureem, curegmifs, cv_cureem, or cv_curegmifs.

Note

The contents of an mixturecure fitted object differ depending upon whether the EM (cureem) or GMIFS (curegmifs) algorithm is used for model fitting. Also, the output differs depending upon whether x.latency is specified in the model (i.e., variables are included in the latency portion of the model fit) or only terms on the right hand side of the equation are included (i.e., variables are included in the incidence portion of the model).

See Also

curegmifs, cureem, coef.mixturecure, summary.mixturecure, plot.mixturecure, predict.mixturecure

Examples

```
library(survival)
set.seed(1234)
temp <- generate_cure_data(N = 100, J = 10, nTrue = 10, A = 1.8)
training <- temp$Training
fit <- curegmifs(Surv(Time, Censor) ~ .,
data = training, x.latency = training,
model = "weibull", thresh = 1e-4, maxit = 2000,
epsilon = 0.01, verbose = FALSE)
print(fit)
```

sufficient_fu_test Test for sufficient follow-up

Description

Tests for sufficient follow-up using a Kaplan-Meier fitted object.

Usage

sufficient_fu_test(object)

Arguments

> object a survfit object.

Value

p.value $\quad \mathrm{p}$-value from testing the null hypothesis that there was not sufficient follow-up against the alternative that there was sufficient follow-up
$\mathrm{Nn} \quad$ total number of events that occurred at time $>\operatorname{pmax}(0,2 *$ (last observed event time)-(last observed time)) and < the last observed event time
N number of observations in the dataset

References

Maller, R. A. and Zhou, X. (1996) Survival Analysis with Long-Term Survivors. John Wiley \& Sons.

See Also

survfit, cure_estimate, nonzerocure_test

Examples

```
library(survival)
set.seed(1234)
temp <- generate_cure_data(N = 100, J = 10, nTrue = 10, A = 1.8)
training <- temp$Training
km.fit <- survfit(Surv(Time, Censor) ~ 1, data = training)
sufficient_fu_test(km.fit)
```

```
summary.mixturecure Summarize a Fitted Mixture Cure Object.
```


Description

summary method for a mixturecure object fit using curegmifs, cureem, cv_curegmifs, or cv_cureem.

Usage

\#\# S3 method for class 'mixturecure'
summary (object, ...)

Arguments

object a mixturecure object resulting from curegmifs, cureem, cv_curegmifs, or cv_cureem.
... other arguments.

Value

prints the following items extracted from the object fit using curegmifs or cureem: the step and value that maximizes the log-likelihood; the step and value that minimizes the AIC, modified AIC (mAIC), corrected AIC (cAIC), BIC, modified BIC (mBIC), and extended BIC (EBIC). Returns log-likelihood, AIC, and BIC if the object was fit using cv_curegmifs or cv_cureem at the optimal cross-validated values if no FDR control; the number of non-zero incidence and latency variables is returned when cross-validation is used together with FDR control.

See Also

curegmifs, cureem, coef.mixturecure, plot.mixturecure, predict.mixturecure

Examples

```
library(survival)
set.seed(1234)
temp <- generate_cure_data( \(\mathrm{N}=100\), \(\mathrm{J}=10\), nTrue \(=10, \mathrm{~A}=1.8\) )
training <- temp\$Training
fit <- curegmifs(Surv(Time, Censor) ~ .,
    data \(=\) training, \(x . l a t e n c y ~=~ t r a i n i n g, ~\)
    model \(=\) "weibull", thresh \(=1 \mathrm{e}-4\), maxit \(=2000\),
    epsilon = 0.01, verbose \(=\) FALSE)
summary(fit)
```


Index

```
* datasets
    amltest,2
    amltrain, 11
* htest
    nonzerocure_test,40
    sufficient_fu_test,44
* methods
    coef.mixturecure, 22
    plot.mixturecure,41
    predict.mixturecure, 42
    print.mixturecure,43
    summary.mixturecure, 45
* models
    cureem, 24
    curegmifs,27
    cv_cureem, 30
    cv_curegmifs, 35
* regression
    cureem,24
    curegmifs,27
    cv_cureem, 30
    cv_curegmifs, 35
* univar
    AUC, 20
    concordance_mcm, 23
    cure_estimate, 29
amltest,2
amltrain, 11
AUC, 20, 23
coef.mixturecure, 22, 41, 43-45
concordance_mcm, 21, 23
cure_estimate, 29, 40,45
cureem, 22, 24, 34, 41, 43-45
curegmifs, 22, 27, 38, 41, 43-45
cv_cureem, 27, 30
cv_curegmifs, 29,35
generate_cure_data, 38
```

nonzerocure_test, 30, 40, 45
plot.mixturecure, 22, 41, 43-45
predict.mixturecure, 22, 41, 42, 44, 45
print.mixturecure, 43
sufficient_fu_test, $30,40,44$
summary.mixturecure, 22, 41, 43, 44, 45
survfit, 30, 40, 45

