lgspline: Lagrangian Multiplier Smoothing Splines for Smooth Function
Estimation
Implements Lagrangian multiplier smoothing splines for flexible
nonparametric regression and function estimation. Provides tools for fitting,
prediction, and inference using a constrained optimization approach to
enforce smoothness.
Supports generalized linear models, Weibull accelerated failure time (AFT) models,
quadratic programming problems, and customizable arbitrary correlation structures.
Options for fitting in parallel are provided. The method builds upon the framework described
by Ezhov et al. (2018) <doi:10.1515/jag-2017-0029> using Lagrangian multipliers
to fit cubic splines. For more information on correlation structure estimation,
see Searle et al. (2009) <ISBN:978-0470009598>. For quadratic programming and
constrained optimization in general, see Nocedal & Wright (2006) <doi:10.1007/978-0-387-40065-5>.
For a comprehensive background on smoothing splines, see Wahba (1990)
<doi:10.1137/1.9781611970128> and Wood (2006) <ISBN:978-1584884743>
"Generalized Additive Models: An Introduction with R".
Version: |
0.1.0 |
Depends: |
R (≥ 3.5.0) |
Imports: |
Rcpp (≥ 1.0.7), RcppArmadillo, FNN, RColorBrewer, plotly, quadprog, methods, stats |
LinkingTo: |
Rcpp, RcppArmadillo |
Suggests: |
testthat (≥ 3.0.0), spelling, knitr, rmarkdown, parallel, survival, graphics |
Published: |
2025-04-22 |
DOI: |
10.32614/CRAN.package.lgspline |
Author: |
Matthew Davis
[aut, cre] |
Maintainer: |
Matthew Davis <matthewlouisdavis at gmail.com> |
BugReports: |
https://github.com/matthewlouisdavisBioStat/lgspline/issues |
License: |
MIT + file LICENSE |
URL: |
https://github.com/matthewlouisdavisBioStat/lgspline |
NeedsCompilation: |
yes |
Language: |
en-US |
Materials: |
README |
CRAN checks: |
lgspline results [issues need fixing before 2025-05-07] |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=lgspline
to link to this page.