Package 'phylopath'

June 12, 2024

Type Package
Title Perform Phylogenetic Path Analysis
Version 1.3.0
Maintainer Wouter van der Bijl <wouter@zoology.ubc.ca></wouter@zoology.ubc.ca>
Description A comprehensive and easy to use R implementation of confirmatory phylogenetic path analysis as described by Von Hardenberg and Gonzalez-Voyer (2012) <doi:10.1111 j.1558-5646.2012.01790.x="">.</doi:10.1111>
<pre>URL https://Ax3man.github.io/phylopath/</pre>
<pre>BugReports https://github.com/Ax3man/phylopath/issues</pre>
License GPL-3
LazyData TRUE
Depends R (>= 2.10)
Imports ape (>= 4.1), future.apply, ggm (>= 2.3), ggplot2 (>= 3.0.0), ggraph (>= 1.0.0), igraph (>= 1.0.1), phylolm (>= 2.5), purrr (>= 0.2.3), tibble
RoxygenNote 7.3.1
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
Encoding UTF-8
NeedsCompilation no
Author Wouter van der Bijl [aut, cre]
Repository CRAN
Date/Publication 2024-06-11 23:10:02 UTC
Contents
average

2 average

aver	age	Extrac path ai		rage	the	e be	est s	ирр	ort	ed	тc	ode	ls j	ro	m	a j	ph	ylo	oge	ene	etio	?
Index																						21
	show_warnings		 	• •	• •					•			٠	•		٠	•	•		•	•	20
	rhino_tree																					
	rhino																					
	red_list_tree																					
	red_list		 																			18
	plot_model_set		 																			16
	plot.fitted_DAG		 																			15
	plot.DAG		 																			13
	phylo_path		 																			11
	est_DAG		 																			10
	define_model_set .		 																			9
	DAG		 																			8
	coef_plot		 																			7
	cichlids_tree		 																			7
	cichlids		 																			6
	choice		 																			5

Description

Extract and average the best supported models from a phylogenetic path analysis.

Usage

```
average(phylopath, cut_off = 2, avg_method = "conditional", ...)
```

Arguments

An object of class phylopath. phylopath cut_off The CICc cut-off used to select the best models. Use Inf to average over all models. Use the best() function to only use the top model, or choice() to select any single model. avg_method Either "full" or "conditional". The methods differ in how they deal with averaging a path coefficient where the path is absent in some of the models. The full method sets the coefficient (and the variance) for the missing paths to zero, meaning paths that are missing in some models will shrink towards zero. The conditional method only averages over models where the path appears, making it more sensitive to small effects. Following von Hardenberg & Gonzalez-Voyer 2013, conditional averaging is set as the default. Arguments to pass to phylolm::phylolm and phylolm::phyloglm. Provide boot = K parameter to enable bootstrapping, where K is the number of bootstrap replicates. If you specified other options in the original phylo_path call you don't need to specify them again.

average_DAGs 3

Value

An object of class fitted_DAG.

Examples

```
candidates <- define_model_set(</pre>
   A = NL \sim RS,
   B = RS \sim NL + BM,
    .common = c(LS \sim BM, DD \sim NL, NL \sim BM)
 p <- phylo_path(candidates, rhino, rhino_tree)</pre>
 summary(p)
 # Models A and B have similar support, so we may decide to take
 # their average.
 avg_model <- average(p)</pre>
 # Print the average model to see coefficients, se and ci:
 avg_model
 ## Not run:
 # Plot to show the weighted graph:
 plot(avg_model)
 # One can see that an averaged model is not necessarily a DAG itself.
 # This model actually has a path in two directions.
 # Note that coefficients that only occur in one of the models become much
 # smaller when we use full averaging:
 coef_plot(avg_model)
 coef_plot(average(p, method = 'full'))
## End(Not run)
```

average_DAGs

Perform model averaging on a list of DAGs.

Description

Perform model averaging on a list of DAGs.

```
average_DAGs(
  fitted_DAGs,
  weights = rep(1, length(coef)),
  avg_method = "conditional",
```

4 best

```
)
```

Arguments

fitted_DAGs A list of fitted_DAG objects containing coefficients and standard errors, usually

obtained by using est_DAG() on several DAGs.

weights A vector of associated model weights.

avg_method Either "full" or "conditional". The methods differ in how they deal with

averaging a path coefficient where the path is absent in some of the models. The full method sets the coefficient (and the variance) for the missing paths to zero, meaning paths that are missing in some models will shrink towards zero. The conditional method only averages over models where the path appears, making it more sensitive to small effects. Following von Hardenberg & Gonzalez-Voyer

2013, conditional averaging is set as the default.

... Use of the ellipses is deprecated.

Value

An object of class fitted_DAG, including standard errors and confidence intervals.

Examples

best

Extract and estimate the best supported model from a phylogenetic path analysis.

Description

Extract and estimate the best supported model from a phylogenetic path analysis.

```
best(phylopath, ...)
```

choice 5

Arguments

phylopath An object of class phylopath.

... Arguments to pass to phylolm::phylolm and phylolm::phyloglm. Provide boot = K parameter to enable bootstrapping, where K is the number of bootstrap replicates. If you specified other options in the original phylo_path call you don't

need to specify them again.

Value

An object of class fitted_DAG.

Examples

```
candidates <- define_model_set(
    A = NL ~ BM,
    B = NL ~ LS,
    .common = c(LS ~ BM, DD ~ NL)
)
p <- phylo_path(candidates, rhino, rhino_tree)
best_model <- best(p)
# Print the best model to see coefficients, se and ci:
best_model
# Plot to show the weighted graph:
plot(best_model)</pre>
```

choice

Extract and estimate an arbitrary model from a phylogenetic path analysis.

Description

Extract and estimate an arbitrary model from a phylogenetic path analysis.

Usage

```
choice(phylopath, choice, ...)
```

Arguments

phylopath An object of class phylopath.

choice A character string of the name of the model to be chosen, or the index in

model_set.

... Arguments to pass to phylolm::phylolm and phylolm::phyloglm. Provide boot

= K parameter to enable bootstrapping, where K is the number of bootstrap replicates. If you specified other options in the original phylo_path call you don't

need to specify them again.

6 cichlids

Value

An object of class fitted_DAG.

Examples

```
candidates <- define_model_set(
  A = NL ~ BM,
  B = NL ~ LS,
  .common = c(LS ~ BM, DD ~ NL)
)
p <- phylo_path(candidates, rhino, rhino_tree)
my_model <- choice(p, "B")
# Print the best model to see coefficients, se and ci:
my_model
# Plot to show the weighted graph:
plot(my_model)</pre>
```

cichlids

Cichlid traits and the evolution of cooperative breeding.

Description

A data set with binary traits, used in an analysis on the evolution of cooperative breeding by Dey et al 2017. Variable names are shortened for easy of use and consist of cooperative breeding (C), mating system (M), parental care (P), social grouping (G) and diet (D). All traits are coded as two level factors.

Usage

cichlids

Format

An object of class data. frame with 69 rows and 5 columns.

Source

Dey, C.J., O'Connor, C.M., Wilkinson, H., Shultz, S., Balshine, S. & Fitzpatrick, J.L. 2017. Direct benefits and evolutionary transitions to complex societies. Nat Ecol Evol 1: 137.

cichlids_tree 7

cichlids_tree

Cichlid phylogeny.

Description

The phylogenetic tree of cichlid species that accompanies the cichlids dataset. The phylogeny is based on five nuclear genes and three mitochondrial genes.

Usage

```
cichlids_tree
```

Format

An object of class phylo of length 4.

Source

Dey, C.J., O'Connor, C.M., Wilkinson, H., Shultz, S., Balshine, S. & Fitzpatrick, J.L. 2017. Direct benefits and evolutionary transitions to complex societies. Nat Ecol Evol 1: 137.

coef_plot

Plot path coefficients and their confidence intervals or standard errors.

Description

Plot path coefficients and their confidence intervals or standard errors.

```
coef_plot(
  fitted_DAG,
  error_bar = "ci",
  order_by = "default",
  from = NULL,
  to = NULL,
  reverse_order = FALSE
)
```

DAG DAG

Arguments

fitted_DAG A fitted DAG, usually obtained by best(), average() or est_DAG(). Whether to use confidence intervals ("ci") or standard errors ("se") as error error_bar bars. Will force standard errors with a message if confidence intervals are not available. By "default", the paths are ordered as in the the model that is supplied. Usually order_by this is in the order that was established by [phylo_path()] for all combined graphs. This can be change to "causal" to do a reordering based on the model at hand, or to "strength" to order them by the standardized regression coefficient. from Only show path coefficients from these nodes. Supply as a character vector. tο Only show path coefficients to these nodes. Supply as a character vector. If TRUE, the paths are plotted in reverse order. Particularly useful in combination reverse_order with ggplot2::coord_flip() to create horizontal versions of the plot.

Value

A ggplot object.

Examples

```
d <- DAG(LS ~ BM, NL ~ BM, DD ~ NL + LS)
plot(d)
d_fitted <- est_DAG(d, rhino, rhino_tree, 'lambda')
plot(d_fitted)
coef_plot(d_fitted, error_bar = "se")
# to create a horizontal version, use this:
coef_plot(d_fitted, error_bar = "se", reverse_order = TRUE) + ggplot2::coord_flip()</pre>
```

DAG

Directed acyclic graphs (DAGs)

Description

This function is a simple wrapper around the function from the ggm package with the same name. The only differences are that the order argument defaults to TRUE and that it adds a DAG class for easy plotting. Typically, one would use define_model_set() to create models for use with the phylopath package.

```
DAG(..., order = TRUE)
```

define_model_set 9

Arguments

... a sequence of model formulae

order logical, defaulting to TRUE. If TRUE the nodes of the DAG are permuted accord-

ing to the topological order. If FALSE the nodes are in the order they first appear in the model formulae (from left to right). For use in the phylopath package, this should always be kept to TRUE, but the argument is available to avoid poten-

tial problems with masking the function from other packages.

Details

Supply a formulas for the model as arguments. Formulas should be of the form child ~ parent`` and describe each path ~ parent1 + parent2. Finally, an isolate (unconnected variable) can be included as being connected to itsel late ~ isolate'.

Value

An object of classes matrix and DAG

Examples

```
# Use formula notation to create DAGs: plot(DAG(A~B, B~C)) # Use + to easily add multiple parents to a node: plot(DAG(A~B+C)) # Add a node as it's own parent to create an isolate: plot(DAG(A~B+C, D~D))
```

define_model_set

Define a model set.

Description

This is a convenience function to quickly and clearly define a set of causal models. Supply a list of formulas for each model, using either c(). Formulas should be of the form child ~ parent and describe each path in your model. Multiple children of a single parent can be combined into a single formula: child ~ parent1 + parent2.

Usage

```
define_model_set(..., .common = NULL)
```

Arguments

Named arguments, which each are a lists of formulas defining the paths of a

causal model.

. common A list of formulas that contain causal paths that are common to each model.

10 est_DAG

Details

This function uses ggm::DAG().

Value

A list of models, each of class matrix and DAG.

Examples

```
(m <- define_model_set(
  A = c(a~b, b~c),
  B = c(b~a, c~b),
  .common = c(d~a)))
plot_model_set(m)</pre>
```

est_DAG

Add standardized path coefficients to a DAG.

Description

Add standardized path coefficients to a DAG.

Usage

```
est_DAG(DAG, data, tree, model, method, boot = 0, ...)
```

Arguments

DAG	A directed acyclic graph, typically created with DAG.
data	A ${\tt data.frame}$ with data. If you have binary variables, make sure they are either character values or factors!
tree	A phylogenetic tree of class phylo.
model	The evolutionary model used for the regressions on continuous variables. See phylolm::phylolm for options and details. Defaults to Pagel's lambda model
method	The estimation method for the binary models. See phylolm::phyloglm for options and details. Defaults to logistic MPLE.
boot	The number of bootstrap replicates used to estimate confidence intervals.
	Arguments passed on to phylolm: lower.bound: optional lower bound for the optimization of the phylogenetic model parameter.
	upper.bound: optional upper bound for the optimization of the phylogenetic model parameter.
	starting.value: optional starting value for the optimization of the phylogenetic model parameter.

11 phylo_path

> measurement_error: a logical value indicating whether there is measurement error sigma2_error (see Details).

Arguments passed on to phyloglm:

btol: bound on the linear predictor to bound the searching space.

log.alpha.bound: bound for the log of the parameter alpha.

start.beta: starting values for beta coefficients.

start.alpha: starting values for alpha (phylogenetic correlation).

Value

An object of class fitted_DAG.

Examples

```
d <- DAG(LS ~ BM, NL ~ BM, DD ~ NL + LS)
d_fitted <- est_DAG(d, rhino, rhino_tree, 'lambda')</pre>
plot(d_fitted)
```

phylo_path

Compare causal models in a phylogenetic context.

Description

Continuous variables are modeled using phylolm::phylolm, while binary traits are modeled using phylolm::phyloglm.

Usage

```
phylo_path(
 model_set,
  data,
  tree,
 model = "lambda",
 method = "logistic_MPLE",
 order = NULL,
 parallel = NULL,
 na.rm = TRUE,
)
```

Arguments

model_set A list of directed acyclic graphs. These are matrices, typically created with

define_model_set.

data A data. frame with data. If you have binary variables, make sure they are either

character values or factors!

12 phylo_path

tree A phylogenetic tree of class phylo.

model The evolutionary model used for the regressions on continuous variables. See

phylolm::phylolm for options and details. Defaults to Pagel's lambda model

method The estimation method for the binary models. See phylolm::phyloglm for op-

tions and details. Defaults to logistic MPLE.

order Causal order of the included variable, given as a character vector. This is used to

determine which variable should be the dependent in the dsep regression equations. If left unspecified, the order will be automatically determined. If the combination of all included models is itself a DAG, then the ordering of that full model is used. Otherwise, the most common ordering between each pair of

variables is used to create a general ordering.

parallel Superseded From v1.2 phylopath uses the future package for all parallel pro-

cessing, see details.

na.rm Should rows that contain missing values be dropped from the data as necessary

(with a message)?

... Arguments passed on to phylolm:

lower bound: optional lower bound for the optimization of the phylogenetic

model parameter.

upper.bound: optional upper bound for the optimization of the phylogenetic

model parameter.

starting.value: optional starting value for the optimization of the phyloge-

netic model parameter.

measurement_error: a logical value indicating whether there is measurement

error sigma2_error (see Details).
Arguments passed on to phyloglm:

btol: bound on the linear predictor to bound the searching space.

log.alpha.bound: bound for the log of the parameter alpha.

start.beta: starting values for beta coefficients.

start.alpha: starting values for alpha (phylogenetic correlation).

Details

Parallel processing: From v1.2, phylopath uses the future framework for parallel processing. This is compatible with the parallel computation within the underlying phylolm, making it easy to enable parallel processing of multiple models, and of bootstrap replicates. To enable, simply set a parallel plan() using the future package. Typically, you'll want to run future::plan("multisession", workers = n), where n is the number of cores. Now parallel processing is enabled. Return to sequential processing using future::plan("sequential")

Value

A phylopath object, with the following components:

d_sep for each model a table with separation statements and statistics.

model_set the DAGs

data the supplied data

plot.DAG

```
tree the supplied tree
model the employed model of evolution in phylolm
method the employed method in phyloglm
dots any additional arguments given, these are passed on to downstream functions
warnings any warnings generated by the models
```

Examples

```
#see vignette('intro_to_phylopath') for more details
candidates <- define_model_set(
    A = NL ~ BM,
    B = NL ~ LS,
    .common = c(LS ~ BM, DD ~ NL)
)
p <- phylo_path(candidates, rhino, rhino_tree)

# Printing p gives some general information:
p
# And the summary gives statistics to compare the models:
summary(p)</pre>
```

plot.DAG

Plot a directed acyclic graph.

Description

Plot a directed acyclic graph.

```
## S3 method for class 'DAG'
plot(
  х,
  labels = NULL,
  algorithm = "sugiyama",
 manual_layout = NULL,
  text_size = 6,
  box_x = 12,
  box_y = 8,
  edge_width = 1.5,
  curvature = 0.02,
  rotation = 0,
  flip_x = FALSE,
  flip_y = FALSE,
  arrow = grid::arrow(type = "closed", 18, grid::unit(15, "points")),
)
```

plot.DAG

Arguments

X	A 'DAG" object, usually created with the $define_model_set()$ or DAG() function.
labels	An optional set of labels to use for the nodes. This should be a named vector, of the form $c(var1 = "label1", var2 = "label2")$. If left at 'NULL", the variable names of the DAGs are used.
algorithm	A layout algorithm from igraph, see ggraph::create_layout(). By default, uses the Sugiyama layout algorithm, which is designed to minimize edge crossing in DAGs.
manual_layout	Alternatively, precisely define the layout yourself, by providing a data.frame that at least has a column name with all variable names, and columns x and y with positions to be plotted. Setting this parameter overrides algorithm but other changes, such as rotation and flips will still be applied.
text_size	Size of the node label text.
box_x	To avoid the arrows colliding with the nodes, specify the rectangular dimensions of an invisible box around each node. If you have long labels, you need to increase this.
box_y	To avoid the arrows colliding with the nodes, specify the rectangular dimensions of an invisible box around each node. If you have multi-line labels, you need to increase this.
edge_width	Width of the edges.
curvature	Curvature of the edges. A slight curvature can look pretty.
rotation	Supply the degrees you want to rotate the layout by. This is useful in order to put rotate your upstream nodes towards the top if needed.
flip_x	Whether to flip the node positions horizontally.
flip_y	Whether to flip the node positions vertically.
arrow	A grid::arrow object, specifying the shape and size of the arrowheads. The order of facets is taken from the ordering of the list, with the facet labels coming from the names of the list. If the list is unnamed, sequential lettering is used. Not used.

Examples

```
d <- DAG(a ~ b + c + d)
plot(d)

# Plot with manually defined positions:
ml <- data.frame(
   name = c('a', 'b', 'c', 'd'),
   x = c(1, 1, 2, 2),
   y = c(1, 2, 1, 2)
)
plot(d, manual_layout = ml)</pre>
```

plot.fitted_DAG

plot.fitted_DAG

Plot a directed acyclic graph with path coefficients.

Description

Plot a directed acyclic graph with path coefficients.

Usage

```
## S3 method for class 'fitted_DAG'
plot(
  х,
  type = "width",
  labels = NULL,
  algorithm = "sugiyama",
 manual_layout = NULL,
  text_size = 6,
  box_x = 12,
  box_y = 8,
  edge_width = 1.25,
  curvature = 0.02,
  rotation = 0,
  flip_x = FALSE,
  flip_y = FALSE,
  arrow = grid::arrow(type = "closed", 18, grid::unit(15, "points")),
  colors = c("firebrick", "navy"),
  show.legend = TRUE,
 width_const = NULL,
)
```

Arguments

X	An object of class fitted_DAG.
type	How to express the weight of the path. Either "width", or "color".
labels	An optional set of labels to use for the nodes. This should be a named vector, of the form $c(var1 = "label1", var2 = "label2")$. If left at 'NULL", the variable names of the DAGs are used.
algorithm	A layout algorithm from igraph, see ggraph::create_layout(). By default, uses the Sugiyama layout algorithm, which is designed to minimize edge crossing in DAGs.
manual_layout	Alternatively, precisely define the layout yourself, by providing a data.frame that at least has a column name with all variable names, and columns x and y with positions to be plotted. Setting this parameter overrides algorithm but

other changes, such as rotation and flips will still be applied.

plot_model_set

text_size	Size of the node label text.
box_x	To avoid the arrows colliding with the nodes, specify the rectangular dimensions of an invisible box around each node. If you have long labels, you need to increase this.
box_y	To avoid the arrows colliding with the nodes, specify the rectangular dimensions of an invisible box around each node. If you have multi-line labels, you need to increase this.
edge_width	Width of the edges.
curvature	Curvature of the edges. A slight curvature can look pretty.
rotation	Supply the degrees you want to rotate the layout by. This is useful in order to put rotate your upstream nodes towards the top if needed.
flip_x	Whether to flip the node positions horizontally.
flip_y	Whether to flip the node positions vertically.
arrow	A grid::arrow object, specifying the shape and size of the arrowheads.
	The order of facets is taken from the ordering of the list, with the facet labels coming from the names of the list. If the list is unnamed, sequential lettering is used.
colors	The end points of the continuous color scale. Keep in mind that red and green are obvious colors to use, but are better to be avoided because of color blind users.
show.legend	Whether a legend for the color scale should be shown.
width_const	Deprecated.
	Not used.

Examples

```
d <- DAG(LS ^{\circ} BM, NL ^{\circ} BM, DD ^{\circ} NL + LS) d_fitted <- est_DAG(d, rhino, rhino_tree, 'lambda') plot(d_fitted)
```

Description

Plot several causal hypothesis at once.

plot_model_set 17

Usage

```
plot_model_set(
 model_set,
  labels = NULL,
  algorithm = "kk",
 manual_layout = NULL,
  text_size = 5,
  box_x = 12
  box_y = 10,
  edge_width = 1,
  curvature = 0.05,
  rotation = 0,
  flip_x = FALSE,
  flip_y = FALSE,
  nrow = NULL,
  arrow = grid::arrow(type = "closed", 15, grid::unit(10, "points"))
)
```

Arguments

model_set	A list of DAG objects	 usually created with 	<pre>define_model_set().</pre>

labels An optional set of labels to use for the nodes. This should be a named vec-

tor, of the form c(var1 = "label1", var2 = "label2"). If left at 'NULL", the

variable names of the DAGs are used.

algorithm A layout algorithm from igraph, see ggraph::create_layout(). By default,

uses the Kamada-Kawai layout algorithm. Another good option is "sugiyama", which is designed to minimize edge crossing in DAGs. However, it can often

plot nodes too close together.

manual_layout Alternatively, precisely define the layout yourself, by providing a data.frame

that at least has a column name with all variable names, and columns x and y with positions to be plotted. Setting this parameter overrides algorithm but

other changes, such as rotation and flips will still be applied.

text_size Size of the node label text.

box_x To avoid the arrows colliding with the nodes, specify the rectangular dimensions

of an invisible box around each node. If you have long labels, you need to

increase this.

box_y To avoid the arrows colliding with the nodes, specify the rectangular dimensions

of an invisible box around each node. If you have multi-line labels, you need to

increase this.

edge_width Width of the edges.

curvature Curvature of the edges. A slight curvature can look pretty.

rotation Supply the degrees you want to rotate the layout by. This is useful in order to

put rotate your upstream nodes towards the top if needed.

flip_x Whether to flip the node positions horizontally.

flip_y Whether to flip the node positions vertically.

18 red_list

nrow Number of rows to display the models on.

arrow A grid::arrow object, specifying the shape and size of the arrowheads.

The order of facets is taken from the ordering of the list, with the facet labels coming from the names of the list. If the list is unnamed, sequential lettering is

used.

Value

A ggplot object.

Examples

```
m <- list(one = DAG(a \sim b + c + d), two = DAG(a \sim b, b \sim c, d \sim d))

plot_model_set(m)

plot_model_set(m, algorithm = "sugiyama")
```

red_list

Data on brain size, life history and vulnerability to extinction

Description

A dataset with continuous variables affecting the conservation Status of mammalian species (the IUCN red list of threatened species).

Usage

red_list

Format

An object of class data. frame with 474 rows and 7 columns.

Details

It includes the following variables: brain size (Br), body size (B), gestation period (G), litter size (L), weening age (W), population density (P) and vulnerability to extinction (Status).

Source

Gonzalez-Voyer A, Gonzalez-Suarez M, Vila C, Revilla E (2016) Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution 70:1364-1375. doi: 10.1111/evo.12943

red_list_tree 19

red_list_tree

Mammalian phylogeny

Description

This is the accompanying phylogeny for the red_list data set. It is based on the updated mammalian supertree by Bininda-Emonds et al. 2007 & Fritz et al. 2009.

Usage

red_list_tree

Format

An object of class phylo of length 4.

Source

Gonzalez-Voyer, A. Gonzalez-Suarez M. Vila C. and Revilla E. 2016. Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution 70:1364-1375. doi: 10.1111/evo.12943.

Bininda-Emonds, O. R. P., M. Cardillo, K. E. Jones, R. D. E. MacPhee, R. M. D. Beck, R. Grenyer, S. A. Price, R. A. Vos, J. L. Gittleman, and A. Purvis. 2007. The delayed rise of present-day mammals. Nature 446:507-512.

Fritz, S. A., O. R. P. Bininda-Emonds, and A. Purvis. 2009. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12:538-549.

rhino

Rhinogrades traits.

Description

A simulated dataset, as used by Gonzalez-Voyer and Von Hardenberg as an example, containing variables on body mass (BM), litter size (LS), nose length (NL), dispersal distance (DD) and range size (RS).

Usage

rhino

Format

An object of class data. frame with 100 rows and 6 columns.

20 show_warnings

Source

Gonzalez-Voyer A & von Hardenberg A. 2014. An Introduction to Phylogenetic Path Analysis. Chapter 8. In: Garamszegi LZ (ed.), Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. pp. 201-229. Springer-Verlag Berlin Heidelberg. doi:10.1111/j.1558-5646.2012.01790.x

rhino_tree

Rhinogrades phylogeny.

Description

A phylogenetic tree for the 100 species of the rhino dataset.

Usage

rhino_tree

Format

An object of class phylo of length 4.

Source

Gonzalez-Voyer A & von Hardenberg A. 2014. An Introduction to Phylogenetic Path Analysis. Chapter 8. In: Garamszegi LZ (ed.), Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology. pp. 201-229. Springer-Verlag Berlin Heidelberg. doi:10.1111/j.1558-5646.2012.01790.x

show_warnings

Print out warnings from a phylopath analysis.

Description

Use this function after running phylo_path() to conveniently print any generated warnings to the screen. You can either provide no arguments, which will only work if you run it directly after the analysis, or you have to provide the phylopath object manually.

Usage

```
show_warnings(phylopath = NULL)
```

Arguments

phylopath

A phylopath object of which the warnings should be printed.

Index

```
* datasets
                                                  red_list, 18
    cichlids, 6
                                                  red_list_tree, 19
    cichlids\_tree, 7
                                                  rhino, 19
    red_list, 18
                                                  rhino_tree, 20
    red_list_tree, 19
                                                  show_warnings, 20
    rhino, 19
    rhino_tree, 20
average, 2
average(), 8
average_DAGs, 3
best, 4
best(), 2, 8
choice, 5
choice(), 2
cichlids, 6
cichlids_tree, 7
coef_plot, 7
DAG, 8
DAG(), 14
define_model_set, 9
define_model_set(), 8, 14, 17
est_DAG, 10
est_DAG(), 4, 8
ggm::DAG(), 10
ggplot2::coord_flip(), 8
ggraph::create_layout(), 14, 15, 17
igraph, 14
phylo_path, 2, 5, 11
phylolm::phyloglm, 2, 5, 10-12
phylolm::phylolm, 2, 5, 10–12
\verb"plot.DAG", 13"
plot.fitted_DAG, 15
plot_model_set, 16
```