pprof: Modeling, Standardization and Testing for Provider Profiling

Implements linear and generalized linear models for provider profiling, incorporating both fixed and random effects. For large-scale providers, the linear profiled-based method and the SerBIN method for binary data reduce the computational burden. Provides post-modeling features, such as indirect and direct standardization measures, hypothesis testing, confidence intervals, and post-estimation visualization. For more information, see Wu et al. (2022) <doi:10.1002/sim.9387>.

Version: 1.0.1
Depends: R (≥ 4.1.0)
Imports: Rcpp, RcppParallel, stats, caret, olsrr, pROC, poibin, dplyr, ggplot2, Matrix, lme4, magrittr, scales, tibble, rlang
LinkingTo: Rcpp, RcppArmadillo, RcppParallel
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2024-12-12
DOI: 10.32614/CRAN.package.pprof
Author: Xiaohan Liu [aut, cre], Lingfeng Luo [aut], Yubo Shao [aut], Xiangeng Fang [aut], Wenbo Wu [aut], Kevin He [aut]
Maintainer: Xiaohan Liu <xhliuu at umich.edu>
License: MIT + file LICENSE
URL: https://github.com/UM-KevinHe/pprof
NeedsCompilation: yes
SystemRequirements: GNU make
Materials: README
CRAN checks: pprof results

Documentation:

Reference manual: pprof.pdf

Downloads:

Package source: pprof_1.0.1.tar.gz
Windows binaries: r-devel: pprof_1.0.1.zip, r-release: not available, r-oldrel: pprof_1.0.1.zip
macOS binaries: r-release (arm64): pprof_1.0.1.tgz, r-oldrel (arm64): pprof_1.0.1.tgz, r-release (x86_64): pprof_1.0.1.tgz, r-oldrel (x86_64): pprof_1.0.1.tgz

Linking:

Please use the canonical form https://CRAN.R-project.org/package=pprof to link to this page.