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scoringfunctions-package

Overview of the functions in the scoringfunctions package

Description

The

scoringfunctions package implements consistent scoring (loss) functions and identification

functions

Details

The package functions are categorized into the following classes:

Consistent scoring functions for one-dimensional functionals
Consistent scoring functions for two-dimensional functionals
Identification functions for one-dimensional functionals

Supporting functions
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1. Consistent scoring functions for one-dimensional functionals

aerr_sf: Absolute error scoring function

aperr_sf: Absolute percentage error scoring function

bmedian_sf: S-median scoring function

bregman1_sf: Bregman scoring function (type 1)

bregman2_sf: Bregman scoring function (type 2, Patton scoring function)
bregman3_sf: Bregman scoring function (type 3, QLIKE scoring function)
bregman4_sf: Bregman scoring function (type 4, Patton scoring function)

expectile_sf: Asymmetric piecewise quadratic scoring function (expectile scoring function, ex-
pectile loss function)

ghuber_sf: Generalized Huber scoring function

gpl1_sf: Generalized piecewise linear power scoring function (type 1)
gpl2_sf: Generalized piecewise linear power scoring function (type 2)
huber_sf: Huber scoring function

maelog_sf: MAE-LOG scoring function

maesd_sf: MAE-SD scoring function

nmoment_sf: n-th moment scoring function

obsweighted_sf: Observation-weighted scoring function

quantile_sf: Asymmetric piecewise linear scoring function (quantile scoring function, quantile
loss function)

relerr_sf: Relative error scoring function (MAE-PROP scoring function)
serr_sf: Squared error scoring function
sperr_sf: Squared percentage error scoring function

srelerr_sf: Squared relative error scoring function

2. Consistent scoring functions for two-dimensional functionals

interval_sf: Interval scoring function (Winkler scoring function)

mv_sf: Mean - variance scoring function

3. Identification functions for one-dimensional functionals

expectile_if: Expectile identification function
mean_if: Mean identification function
nmoment_if: n-th moment identification function

quantile_if: Quantile identification function

4. Identification functions for two-dimensional functionals

mv_if: Mean - variance identification function
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5. Supporting functions

capping_function: Capping function

aerr_sf Absolute error scoring function

Description

The function aerr_sf computes the absolute error scoring function when y materializes and x is the
predictive median functional.

The absolute error scoring function is defined in Table 1 in Gneiting (2011).

Usage

aerr_sf(x, y)

Arguments
X Predictive median functional (prediction). It can be a vector of length n (must
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The absolute error scoring function is defined by:

S(z,y) = |z -yl

Domain of function:

r €R

y€eR

Range of function:

S(xay) ZovvxayeR

Value

Vector of absolute errors.
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Note

For details on the absolute error scoring function, see Gneiting (2011).
The median functional is the median of the probability distribution I of y (Gneiting 2011).
The absolute error scoring function is negatively oriented (i.e. the smaller, the better).

The absolute error scoring function is strictly F-consistent for the median functional. [ is the family
of probability distributions F' for which Er[Y] exists and is finite (Raiffa and Schlaifer 1961, p.196;
Ferguson 1967, p.51; Thomson 1979; Saerens 2000; Gneiting 2011).

References

Ferguson TS (1967) Mathematical Statistics: A Decision-Theoretic Approach. Academic Press,
New York.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Raiffa H,Schlaifer R (1961) Applied Statistical Decision Theory. Colonial Press, Clinton.

Saerens M (2000) Building cost functions minimizing to some summary statistics. IEEE Transac-
tions on Neural Networks 11(6):1263—-1271. doi:10.1109/72.883416.

Thomson W (1979) Eliciting production possibilities from a well-informed manager. Journal of
Economic Theory 20(3):360-380. doi:10.1016/00220531(79)900425.

Examples

# Compute the absolute error scoring function.
df <- data.frame(
y = rep(x = 0, times = 5),
X = -2:2
)
df$absolute_error <- aerr_sf(x = df$x, y = df$y)

print(df)

aperr_sf Absolute percentage error scoring function

Description

The function aperr_sf computes the absolute percentage error scoring function when y materializes
and z is the predictive med ™Y (F') functional.

The absolute percentage error scoring function is defined in Table 1 in Gneiting (2011).

Usage

aperr_sf(x, y)


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1109/72.883416
https://doi.org/10.1016/0022-0531%2879%2990042-5
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Arguments
X Predictive med(™%) (F) functional (prediction). It can be a vector of length n
(must have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The absolute percentage error scoring function is defined by:

S(z,y) = [(z —y)/y

Domain of function:

x>0

y>0

Range of function:
S(z,y) > 0,Vx,y >0

Value

Vector of absolute percentage errors.

Note

For details on the absolute percentage error scoring function, see Gneiting (2011).

The S-median functional, med® (F) is the median of a probability distribution whose density is
proportional to 32 f (), where f is the density of the probability distribution F' of y (Gneiting 2011).

The absolute percentage error scoring function is negatively oriented (i.e. the smaller, the better).

The absolute percentage error scoring function is strictly F(*)-consistent for the med(—Y (F) func-
tional. F is the family of probability distributions for which Ex[Y] exists and is finite. F(*) is the
subclass of probability distributions in I, which are such that w(y) f(y), w(y) = 1/y has finite
integral over (0, cc), and the probability distribution F(*") with density proportional to w(y) f(y)
belongs to IF (see Theorems 5 and 9 in Gneiting 2011).

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.


https://doi.org/10.1198/jasa.2011.r10138
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Examples

# Compute the absolute percentage error scoring function.
df <- data.frame(

y = rep(x = 2, times = 3),

x =1:3
)

df$absolute_percentage_error <- aperr_sf(x = df$x, y = df$y)

print(df)

bmedian_sf B-median scoring function

Description

The function bmedian_sf computes the S-median scoring function when y materializes and x is the
predictive med® (F) functional.

The 5-median scoring function is defined in eq. (4) in Gneiting (2011).

Usage
bmedian_sf(x, y, b)

Arguments
X Predictive med(ﬂ)(F) functional (prediction). It can be a vector of length n
(must have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
b It can be a vector of length n (must have the same length as ).
Details

The B-median scoring function is defined by:

S(z,y,b) =1~ (y/x)"|

Domain of function:

x>0

y>0
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b0

Range of function:
S(x,y,b) > 0,Vz,y >0,b#0

Value

Vector of S-median losses.

Note

For details on the $-median scoring function, see Gneiting (2011).

The S-median functional, med® (F) is the median of a probability distribution whose density is
proportional to 32 f (), where f is the density of the probability distribution F' of y (Gneiting 2011).

The 5-median scoring function is negatively oriented (i.e. the smaller, the better).

The (-median scoring function is strictly F(*)-consistent for the med” )(F) functional. T is the
family of probability distributions for which Ex[Y] exists and is finite. F(*) is the subclass of
probability distributions in I, which are such that w(y) f(y), w(y) = y” has finite integral over
(0, 00), and the probability distribution F(*) with density proportional to w(y) f(y) belongs to F
(see Theorems 5 and 9 in Gneiting 2011)

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Examples

# Compute the bmedian scoring function.

df <- data.frame(

y = rep(x = 2, times = 3),
x = 1:3,
b =c(-1, 1, 2)

)
df$bmedian_error <- bmedian_sf(x = df$x, y = df$y, b = df$b)

print(df)


https://doi.org/10.1198/jasa.2011.r10138
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bregmani_sf Bregman scoring function (type 1)

Description

The function bregmanl_sf computes the Bregman scoring function when y materializes and x is
the predictive mean functional.

The Bregman scoring function is defined by eq. (18) in Gneiting (2011) and the form implemented
here for ¢(x) = |z|* is defined by eq. (19) in Gneiting (2011).

Usage

bregmani_sf(x, y, a)

Arguments
X Predictive mean functional (prediction). It can be a vector of length n (must
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as ).
a It can be a vector of length n (must have the same length as ).
Details

The Bregman scoring function (type 1) is defined by:

a—l(

S(x,y,a) = [y|* — [|* — asign(z)|z[*"" (y — =)

Domain of function:

rzeR

yeR

a>1
Range of function:

S(z,y,a) > 0,Vz,y € Rya > 1

Value

Vector of Bregman losses.
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Note
The implemented function is denoted as type 1 since it corresponds to a specific type of ¢(z) of the
general form of the Bregman scoring function defined by eq. (18) in Gneiting (2011).

For details on the Bregman scoring function, see Savage (1971), Banerjee et al. (2005) and Gneiting
(2011).

The mean functional is the mean Ex[Y] of the probability distribution F' of y (Gneiting 2011).
The Bregman scoring function is negatively oriented (i.e. the smaller, the better).

The herein implemented Bregman scoring function is strictly F-consistent for the mean functional.
IF is the family of probability distributions for which Er[Y] and Er[|Y'|%] exist and are finite (Savage
1971; Gneiting 2011).

References

Banerjee A, Guo X, Wang H (2005) On the optimality of conditional expectation as a Bregman pre-
dictor. IEEE Transactions on Information Theory 51(7):2664-2669. doi:10.1109/TIT.2005.850145.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Savage LJ (1971) Elicitation of personal probabilities and expectations. Journal of the American
Statistical Association 66(337):783-810. doi:10.1080/01621459.1971.10482346.

Examples

# Compute the Bregman scoring function (type 1).

df <- data.frame(
y = rep(x = 0, times = 7)
x =c(-3, -2, -1, 0, 1, 2, 3),
a =rep(x = 3, times = 7)

~

)
df$bregmani_penalty <- bregmani_sf(x = df$x, y = df$y, a = df$a)
print(df)

# Equivalence of Bregman scoring function (type 1) and squared error scoring
# function, when a = 2.

set.seed(12345)

n <- 100

X <= runif(n, -20, 20)

y <= runif(n, -20, 20)

a <- rep(x = 2, times = n)

u <- bregmani_sf(x = x, y =y, a = a)

v <- serr_sf(x = x, y =y)


https://doi.org/10.1109/TIT.2005.850145
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1080/01621459.1971.10482346
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max(abs(u - v)) # values are slightly higher than @ due to rounding error
min(abs(u - v))

bregman2_sf Bregman scoring function (type 2, Patton scoring function)

Description

The function bregman?2_sf computes the Bregman scoring function when y materializes and x is
the predictive mean functional.

The Bregman scoring function is defined by eq. (18) in Gneiting (2011) and the form implemented
here for ¢(z) = 2, b € R\ {0, 1} is defined by eq. (20) in Gneiting (2011).

b(b—1)

Usage
bregman2_sf(x, y, b)

Arguments
X Predictive mean functional (prediction). It can be a vector of length n (must
have the same length as y).
\% Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
b It can be a vector of length n (must have the same length as ).
Details

The Bregman scoring function (type 2) is defined by:

1
b(b—1)

1

S(l‘,y,b) = (yb - xb) -

Domain of function:

x>0

y>0

beR\{0,1}

Range of function:

S(z,y,b) > 0,Vz,y >0,b € R\ {0,1}
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Value

Vector of Bregman losses.

Note
The implemented function is denoted as type 2 since it corresponds to a specific type of ¢(x) of the
general form of the Bregman scoring function defined by eq. (18) in Gneiting (2011).
For details on the Bregman scoring function, see Savage (1971), Banerjee et al. (2005) and Gneiting
(2011). For details on the specific form implemented here, see Patton (2011).
The mean functional is the mean E[Y] of the probability distribution F of y (Gneiting 2011).
The Bregman scoring function is negatively oriented (i.e. the smaller, the better).

The herein implemented Bregman scoring function is strictly F-consistent for the mean functional.
1

b(b—1)

IF is the family of probability distributions F' for which Ex[Y] and Ep| Y] exist and are

finite (Savage 1971; Gneiting 2011).

References

Banerjee A, Guo X, Wang H (2005) On the optimality of conditional expectation as a Bregman pre-
dictor. IEEE Transactions on Information Theory 51(7):2664-2669. doi:10.1109/TIT.2005.850145.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. Journal of
Econometrics 160(1):246-256. doi:10.1016/j.jeconom.2010.03.034.

Savage LJ (1971) Elicitation of personal probabilities and expectations. Journal of the American
Statistical Association 66(337):783-810. doi:10.1080/01621459.1971.10482346.

Examples

# Compute the Bregman scoring function (type 2).

df <- data.frame(

y = rep(x = 2, times = 6),

X = rep(x = 1:3, times = 2),

b = rep(x = c(-3, 3), each = 3)
)

df$bregman2_penalty <- bregman2_sf(x = df$x, y = df$y, b = df$b)
print(df)

# The Bregman scoring function (type 2) is half the squared error scoring
# function, when b = 2.

df <- data.frame(
y = rep(x = 5.5, times = 10),
x = 1:10,
b = rep(x = 2, times = 10)


https://doi.org/10.1109/TIT.2005.850145
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1016/j.jeconom.2010.03.034
https://doi.org/10.1080/01621459.1971.10482346
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)
df$bregman2_penalty <- bregman2_sf(x = df$x, y = df$y, b = df$b)
df$squared_error <- serr_sf(x = df$x, y = dfsy)
df$ratio <- df$bregman2_penalty/df$squared_error
print(df)
# When a = b > 1 the Bregman scoring function (type 2) coincides with the
# Bregman scoring function (type 1) up to a multiplicative constant.
df <- data.frame(
y = rep(x = 5.5, times = 10),

x = 1:10,
b = rep(x = c(3, 4), each = 5)

)

df$bregman2_penalty <- bregman2_sf(x = df$x, y = df$y, b = df$b)

df$bregmani_penalty <- bregmani_sf(x = df$x, y = df$y, a = df$b)
df$ratio <- df$bregman2_penalty/df$bregmani_penalty
print(df)
bregman3_sf Bregman scoring function (type 3, QLIKE scoring function)
Description

The function bregman3_sf computes the Bregman scoring function when y materializes and x is
the predictive mean functional.

The Bregman scoring function is defined by eq. (18) in Gneiting (2011) and the form implemented
here for ¢(z) = — log(z) is defined by eq. (20) in Gneiting (2011).

Usage
bregman3_sf(x, y)

Arguments
X Predictive mean functional (prediction). It can be a vector of length n (must
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the

same length as ).
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Details

The Bregman scoring function (type 3) is defined by:

S(z,y) = (y/x) —log(y/z) — 1

Domain of function:

x>0

y>0

Range of function:

S(z,y) > 0,Vx,y >0

Value

Vector of Bregman losses.

Note

The implemented function is denoted as type 3 since it corresponds to a specific type of ¢(x) of the
general form of the Bregman scoring function defined by eq. (18) in Gneiting (2011).

For details on the Bregman scoring function, see Savage (1971), Banerjee et al. (2005) and Gneiting
(2011). For details on the specific form implemented here, see the QLIKE scoring function in Patton
(2011).

The mean functional is the mean Er[Y] of the probability distribution F' of y (Gneiting 2011).
The Bregman scoring function is negatively oriented (i.e. the smaller, the better).

The herein implemented Bregman scoring function is strictly F-consistent for the mean functional.
F is the family of probability distributions F' for which Ex[Y] and Er[log(Y")] exist and are finite
(Savage 1971; Gneiting 2011).

References

Banerjee A, Guo X, Wang H (2005) On the optimality of conditional expectation as a Bregman pre-
dictor. IEEE Transactions on Information Theory 51(7):2664-2669. doi:10.1109/TIT.2005.850145.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. Journal of
Econometrics 160(1):246-256. doi:10.1016/j.jeconom.2010.03.034.

Savage LJ (1971) Elicitation of personal probabilities and expectations. Journal of the American
Statistical Association 66(337):783-810. doi:10.1080/01621459.1971.10482346.


https://doi.org/10.1109/TIT.2005.850145
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1016/j.jeconom.2010.03.034
https://doi.org/10.1080/01621459.1971.10482346
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Examples

# Compute the Bregman scoring function (type 3, QLIKE scoring function).
df <- data.frame(
y = rep(x = 2, times = 3),
x =1:3
)
df$bregman3_penalty <- bregman3_sf(x = df$x, y = dfsy)

print(df)

bregman4_sf Bregman scoring function (type 4, Patton scoring function)

Description

The function bregman4_sf computes the Bregman scoring function when y materializes and x is
the predictive mean functional.

The Bregman scoring function is defined by eq. (18) in Gneiting (2011) and the form implemented
here for ¢(z) = xlog(z) is defined by eq. (20) in Gneiting (2011).

Usage

bregmand_sf(x, y)

Arguments
X Predictive mean functional (prediction). It can be a vector of length n (must
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The Bregman scoring function (type 4) is defined by:

S(x,y) == ylog(y/x) —y+z

Domain of function:

x>0

y>0

Range of function:

S(z,y) > 0,Yx,y >0
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Value

Vector of Bregman losses.

Note

The implemented function is denoted as type 4 since it corresponds to a specific type of ¢(z) of the
general form of the Bregman scoring function defined by eq. (18) in Gneiting (2011).

For details on the Bregman scoring function, see Savage (1971), Banerjee et al. (2005) and Gneiting
(2011). For details on the specific form implemented here, see Patton (2011).

The mean functional is the mean E[Y] of the probability distribution F of y (Gneiting 2011).
The Bregman scoring function is negatively oriented (i.e. the smaller, the better).

The herein implemented Bregman scoring function is strictly F-consistent for the mean functional.
IF is the family of probability distributions F' for which Er[Y] and Er[Y log(Y")] exist and are finite
(Savage 1971; Gneiting 2011).

References

Banerjee A, Guo X, Wang H (2005) On the optimality of conditional expectation as a Bregman pre-
dictor. IEEE Transactions on Information Theory 51(7):2664-2669. doi:10.1109/TIT.2005.850145.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. Journal of
Econometrics 160(1):246-256. doi:10.1016/j.jeconom.2010.03.034.

Savage LJ (1971) Elicitation of personal probabilities and expectations. Journal of the American
Statistical Association 66(337):783-810. doi:10.1080/01621459.1971.10482346.

Examples
# Compute the Bregman scoring function (type 4).
df <- data.frame(
y = rep(x = 2, times = 3),
x =1:3
)
df$bregman4_penalty <- bregman4_sf(x = df$x, y = df$y)

print(df)


https://doi.org/10.1109/TIT.2005.850145
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1016/j.jeconom.2010.03.034
https://doi.org/10.1080/01621459.1971.10482346
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capping_function Capping function

Description

The function capping_function computes the value of the capping function, defined in Taggart
(2022), p.205.

It is used by the generalized Huber loss function among others (see Taggart 2022).

Usage

capping_function(t, a, b)

Arguments
t It can be a vector of length n.
a It can be a vector of length n (must have the same length as ).
b It can be a vector of length n (must have the same length as 7).
Details

The capping function k, ;(t) is defined by:
Kap(t) := max{min{t, b}, —a}
or equivalently,
—a, t<—a
Kap(t) == t, —a<t<b

t>b

Domain of function:

teR

Value

Vector of values of the capping function.
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Note

For the definition of the capping function, see Taggart (2022), p.205.

References

Taggart RJ (2022) Point forecasting and forecast evaluation with generalized Huber loss. Electronic
Journal of Statistics 16:201-231. doi:10.1214/21EJS1957.

Examples

# Compute the capping function.

df <- data.frame(
t=c@, 1,1, -1,1, -1, 1, -1, 1, 1,
a=c(o, 90, 0, 0, Inf, Inf, Inf, Inf, 2,
b = c(0, 0, Inf, Inf, @, @, Inf, Inf, 3

2.5, 2.5, 3.5, 3.5),

.5, 3
3, 2, 3,2,3),
,2,3,2,3,2)

’ ’

)
df$cf <- capping_function(t = df$t, a = df$a, b = df$h)

print(df)

expectile_if Expectile identification function

Description

The function expectile_if computes the expectile identification function at a specific level p, when
y materializes and x is the predictive expectile at level p.

The expectile identification function is defined in Table 9 in Gneiting (2011).

Usage

expectile_if(x, y, p)

Arguments
X Predictive expectile (prediction) at level p. It can be a vector of length n (must
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the

same length as z).

p It can be a vector of length n (must have the same length as y).


https://doi.org/10.1214/21-EJS1957
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Details

The expectile identification function is defined by:

V(z,y,p) :=2[{z >y} —pl(z —y)

Domain of function:

r€eR

yeR

O0<p<l1

Range of function:

V(z,y,p) €R

Value

Vector of values of the expectile identification function.

Note

For the definition of expectiles, see Newey and Powell (1987).

The expectile identification function is a strict F-identification function for the p-expectile func-
tional (Gneiting 2011; Fissler and Ziegel 2016; Dimitriadis et al. 2024).

FF is the family of probability distributions F' for which Ex[Y] exists and is finite (Gneiting 2011;
Fissler and Ziegel 2016; Dimitriadis et al. 2024).

References

Dimitriadis T, Fissler T, Ziegel JF (2024) Osband’s principle for identification functions. Statistical
Papers 65:1125-1132. doi:10.1007/s0036202301428x.

Fissler T, Ziegel JF (2016) Higher order elicitability and Osband’s principle. The Annals of Statistics
44(4):1680-1707. doi:10.1214/16 A0S 14309.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Newey WK, Powell JL (1987) Asymmetric least squares estimation and testing. Econometrica
55(4):819-847. doi:10.2307/1911031.
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Examples

# Compute the expectile identification function.

df <- data.frame(
y = rep(x = 0, times = 6),
x =c¢c(2, 2, -2, -2, 0, @),
p = rep(x = c(0.05, 0.95), times = 3)

)

df$expectile_if <- expectile_if(x = df$x, y = df$y, p = df$p)

expectile_sf Asymmetric piecewise quadratic scoring function (expectile scoring
function, expectile loss function)

Description

The function expectile_sf computes the asymmetric piecewise quadratic scoring function (expectile
scoring function) at a specific level p, when y materializes and x is the predictive expectile at level

D.
The asymmetric piecewise quadratic scoring function is defined by eq. (27) in Gneiting (2011).

Usage

expectile_sf(x, y, p)

Arguments
X Predictive expectile (prediction) at level p. It can be a vector of length n (must
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
p It can be a vector of length n (must have the same length as ).
Details

The asymmetric piecewise quadratic scoring function is defined by:

S(z,y,p) = |z >y} — pl(x — y)?

or equivalently,

S(x,y,p) = p(max{—(z —y),0})* + (1 — p)(max{z — y,0})*

Domain of function:
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reR

yeR

0<p<l1

Range of function:
S(z,y,p) > 0,Vz,y € R,p € (0,1)

Value

Vector of expectile losses.

Note

For the definition of expectiles, see Newey and Powell (1987).

The asymmetric piecewise quadratic scoring function is negatively oriented (i.e. the smaller, the
better).

The asymmetric piecewise quadratic scoring function is strictly F-consistent for the p-expectile
functional. T is the family of probability distributions F' for which Ex[Y?] exists and is finite
(Gneiting 2011).

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Newey WK, Powell JL (1987) Asymmetric least squares estimation and testing. Econometrica
55(4):819-847. doi:10.2307/1911031.

Examples

# Compute the asymmetric piecewise quadratic scoring function (expectile scoring
# function).

df <- data.frame(
y = rep(x = 0, times = 6),
x =c(2, 2, -2, -2, 0, 0),
p = rep(x = c(0.05, ©0.95), times = 3)

)
df$expectile_penalty <- expectile_sf(x = df$x, y = df$y, p = df$p)
print(df)

# The asymmetric piecewise quadratic scoring function (expectile scoring
# function) at level p = 0.5 is half the squared error scoring function.


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.2307/1911031
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df <- data.frame(
y = rep(x = 0, times = 3),
x =c(-2, 0, 2),
p = rep(x = c(0.5), times = 3)
df$expectile_penalty <- expectile_sf(x = df$x, y = df$y, p = df$p)

df$squared_error <- serr_sf(x = df$x, y = df$y)

print(df)

ghuber_sf Generalized Huber scoring function

Description

The function ghuber_sf computes the generalized Huber scoring function at a specific level p and
parameters a and b, when y materializes and x is the predictive Huber functional at level p.

The generalized Huber scoring function is defined by eq. (4.7) in Taggart (2022) for ¢(t) = t2.

Usage
ghuber_sf(x, y, p, a, b)

Arguments
X Predictive Huber functional (prediction) at level p. It can be a vector of length
n (must have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
p It can be a vector of length n (must have the same length as ).
It can be a vector of length n (must have the same length as ).
b It can be a vector of length n (must have the same length as ).
Details

The generalized Huber scoring function is defined by:

S(x,y,p,a,b) == [H{z >y} = p|l(¥* — (Kap(® — y) +9)* + 2zKap(z — y))

or equivalently

S(xayvpaa‘ab) = |1{3§‘ Z y} _p|fa,b(~1j - y)

or
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S($>y7p7 a, b) = pfa,b(_ max{—(x - y>70}) + (1 - p)fa,b(max{x - y70}>

where

Jan(t) := Fap(t)(2t = Kap(t))
and k4 () is the capping function defined by:
Kap(t) := max{min{t, b}, —a}

Domain of function:

r eR

y €R

O0<p<l1

a>0

b>0

Range of function:
S(z,y,p,a,b) 2 0,Vz,y e R, p € (0,1),a,b> 0

Value

Vector of generalized Huber losses.

Note

For the definition of Huber functionals, see definition 3.3 in Taggart (2022). The value of eq. (4.7)
is twice the value of the equation in definition 4.2 in Taggart (2002).

The generalized Huber scoring function is negatively oriented (i.e. the smaller, the better).

The generalized Huber scoring function is strictly F-consistent for the p-Huber functional. F is the
family of probability distributions F' for which Ex[Y? — (Y — a)?] and Er[Y? — (Y + b)?] (or
equivalently Er[Y]) exist and are finite (Taggart 2022).

References

Taggart RJ (2022) Point forecasting and forecast evaluation with generalized Huber loss. Electronic
Journal of Statistics 16:201-231. doi:10.1214/21EJS1957.
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Examples

# Compute the generalized Huber scoring function.
set.seed(12345)
n<-10

df <- data.frame(

= runif(n, -2, 2),
= runif(n, -2, 2),
runif(n, o, 1),
= runif(n, 0, 1),
= runif(n, 0, 1)

T 0 T <K X
I

)

df$ghuber_penalty <- ghuber_sf(x = df$x, y = df$y, p = df$p, a = df$a, b = df$b)
print(df)

# Equivalence of the generalized Huber scoring function and the asymmetric

# piecewise quadratic scoring function (expectile scoring function), when

# a = Inf and b = Inf.

set.seed(12345)

n <- 100

X <= runif(n, -20, 20)

y <- runif(n, -20, 20)

p <- runif(n, 0, 1)

a <- rep(x = Inf, times = n)
b <- rep(x = Inf, times = n)

[
N
|

ghuber_sf(x = x, y =y, p=p, a=a, b =b)
v <- expectile_sf(x = x, y =y, p = p)

max(abs(u - v)) # values are slightly higher than @ due to rounding error
min(abs(u - v))

# Equivalence of the generalized Huber scoring function and the Huber scoring
# function when p = 1/2 and a = b.

set.seed(12345)
n <- 100

<- runif(n, -20, 20)
runif(n, -20, 20)

<- rep(x = 1/2, times
<- runif(n, 0, 20)

n)

O T <K X
N
1

u <- ghuber_sf(x = x, y=y, p=p, a=a, b=2a)
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v <- huber_sf(x = x, y =y, a = a)

max(abs(u - v)) # values are slightly higher than @ due to rounding error
min(abs(u - v))

gpll_sf Generalized piecewise linear power scoring function (type 1)

Description

The function gpl1_sf computes the generalized piecewise linear power scoring function at a specific
level p for g(z) = x%/|b|, b > 0, when y materializes and x is the predictive quantile at level p.

The generalized piecewise linear power scoring function is defined by eq. (25) in Gneiting (2011)
and the form implemented here for the specific g(x) is defined by eq. (26) in Gneiting (2011).

Usage

gpli_sf(x, y, p, b)

Arguments
X Predictive quantile (prediction) at level p. It can be a vector of length n (must
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
p It can be a vector of length n (must have the same length as ).
It can be a vector of length n (must have the same length as y).
Details

The generalized piecewise linear power scoring function (type 1) is defined by:

S(z,y,p,0) = (1/]b])(H{z = y} —p)(z” —¢")

or equivalently

S(x,y,p,b) == (1/|b]) (p| max{—(a* — "), 0}| + (1 — p)| max{z" — y°, 0}|)

Domain of function:

x>0
y>0

0<p<l1
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b>0

Range of function:
S(x,y,p,b) > 0,Yz,y >0,p € (0,1),b>0

Value

Vector of generalized piecewise linear power losses.

Note

The implemented function is denoted as type 1 since it corresponds to a specific type of g(x) of
the general form of the generalized piecewise linear power scoring function defined by eq. (25) in
Gneiting (2011).

For the definition of quantiles, see Koenker and Bassett Jr (1978).
The generalized piecewise linear scoring function is negatively oriented (i.e. the smaller, the better).

The herein implemented generalized piecewise linear power scoring function is strictly F-consistent
for the p-quantile functional. I is the family of probability distributions F for which E[Y*] exists
and is finite (Thomson 1979; Saerens 2000; Gneiting 2011).

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Koenker R, Bassett Jr G (1978) Regression quantiles. Econometrica 46(1):33-50. doi:10.2307/
1913643.

Saerens M (2000) Building cost functions minimizing to some summary statistics. IEEE Transac-
tions on Neural Networks 11(6):1263—-1271. doi:10.1109/72.883416.

Thomson W (1979) Eliciting production possibilities from a well-informed manager. Journal of
Economic Theory 20(3):360-380. doi:10.1016/00220531(79)900425.

Examples

# Compute the generalized piecewise linear scoring function (type 1).

df <- data.frame(
y = rep(x = 2, times = 6),
c(1, 2,3, 1, 2, 3),
c(rep(x = 0.05, times = 3), rep(x = 0.95, times = 3)),
rep(x = 2, times = 6)

X
p
b

)
df$gpll_penalty <- gpli_sf(x = df$x, y = df$y, p = df$p, b = dfsb)

print(df)


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.2307/1913643
https://doi.org/10.2307/1913643
https://doi.org/10.1109/72.883416
https://doi.org/10.1016/0022-0531%2879%2990042-5
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# Equivalence of generalized piecewise linear scoring function (type 1) and
# asymmetric piecewise linear scoring function (quantile scoring function), when
#b=1.

set.seed(12345)

n <- 100

X <= runif(n, @, 20)

y <= runif(n, 0, 20)

p <= runif(n, 0, 1)

b <- rep(x =1, times = n)

c
N
1

gpll_sf(x = x, y =y, p=p, b =Dh)
v <- quantile_sf(x = x, y =y, p = p)

max(abs(u - v))

# Equivalence of generalized piecewise linear scoring function (type 1) and
# MAE-SD scoring function, when p = 1/2 and b = 1/2.

set.seed(12345)

n <- 100

X <= runif(n, 0, 20)

y <= runif(n, 0, 20)

p <- rep(x = 0.5, times = n)
b <- rep(x = 1/2, times = n)

[
N
I

gpli_sf(x =x, y=y, p=p, b =Db)
v <- maesd_sf(x = x, y = y)

max(abs(u - v))

gpl2_sf Generalized piecewise linear power scoring function (type 2)

Description
The function gpl2_sf computes the generalized piecewise linea power scoring function at a specific
level p for g(x) = log(x), when y materializes and x is the predictive quantile at level p.

The generalized piecewise linear power scoring function is negatively oriented (i.e. the smaller, the
better).

The generalized piecewise linear scoring function is defined by eq. (25) in Gneiting (2011) and the
form implemented here for the specific g(x) is defined by eq. (26) in Gneiting (2011) for b = 0.

Usage

gpl2_sf(x, y, p)



28 gpl2_sf

Arguments
X Predictive quantile (prediction) at level p. It can be a vector of length n (must
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as z).
p It can be a vector of length n (must have the same length as y).
Details

The generalized piecewise linear power scoring function (type 2) is defined by:

S(x,y,p) :== (H{z >y} — p)log(z/y)

or equivalently

S(z,y,p) := plmax{—(log(z) — log(y)), 0}| + (1 — p)| max{log(z) — log(y), 0}|

Domain of function:

x>0

y>0

0<p<l1

Range of function:
S(z,y,p) = 0,¥z,y > 0,p € (0,1)

Value

Vector of generalized piecewise linear losses.

Note

The implemented function is denoted as type 2 since it corresponds to a specific type of g(z) of
the general form of the generalized piecewise linear power scoring function defined by eq. (25) in
Gneiting (2011).

For the definition of quantiles, see Koenker and Bassett Jr (1978).

The herein implemented generalized piecewise linear power scoring function is strictly [F-consistent
for the p-quantile functional. F is the family of probability distributions F' for which Ex[log(Y)]
exists and is finite (Thomson 1979; Saerens 2000; Gneiting 2011).
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Examples

# Compute the generalized piecewise linear scoring function (type 2).

df <- data.frame(
y = rep(x = 2, times = 6),
x =c(, 2, 3,1, 2, 3),
p = c(rep(x = 0.05, times = 3), rep(x = 0.95, times = 3))

)
df$gpl2_penalty <- gpl2_sf(x = df$x, y = df$y, p = df$p)
print(df)

# The generalized piecewise linear scoring function (type 2) is half the MAE-LOG
# scoring function.

df <- data.frame(
y = rep(x = 5.5, times
x = 1:10,
p rep(x = 0.5, times = 10)

10),

)

df$gpl2_penalty <- gpl2_sf(x = df$x, y = df$y, p = df$p)
df$mae_log_penalty <- maelog_sf(x = df$x, y = dfsy)
df$ratio <- df$gpl2_penalty/df$mae_log_penalty

print(df)

huber_sf Huber scoring function

Description

The function huber_sf computes the Huber scoring function with parameter a, when y materializes
and z is the predictive Huber mean.

The Huber scoring function is defined in Huber (1964).


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.2307/1913643
https://doi.org/10.2307/1913643
https://doi.org/10.1109/72.883416
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Usage
huber_sf(x, y, a)

Arguments
X Predictive Huber mean (prediction). It can be a vector of length n (must have
the same length as ).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
a It can be a vector of length n (must have the same length as ).
Details

The Huber scoring function is defined by:

S(z,y,a) =1 2

or equivalently
S(@,y,a) == (1/2)kaa(@ — y)(2(z — y) — Kaa(z = Y))
where k5 (t) is the capping function defined by:
Kq,b(t) := max{min{t, b}, —a}
Domain of function:

r€eR
y€eR

a>0
Range of function:

S(z,y,a) > 0,Ve,y € Rya >0

Value

Vector of Huber losses.
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Note

For the definition of Huber mean, see Taggart (2022).
The Huber scoring function is negatively oriented (i.e. the smaller, the better).

The Huber scoring function is strictly '-consistent for the Huber mean. FF is the family of probability
distributions F for which Ep[Y? — (Y —a)?] and Ep[Y? — (Y +a)?] (or equivalently Ep[Y]) exist
and are finite (Taggart 2022).

References

Huber PJ (1964) Robust estimation of a location parameter. Annals of Mathematical Statistics
35(1):73-101. doi:10.1214/a0oms/1177703732.

Taggart RJ (2022) Point forecasting and forecast evaluation with generalized Huber loss. Electronic
Journal of Statistics 16:201-231. doi:10.1214/21EJS1957.

Examples

# Compute the Huber scoring function.

df <- data.frame(
x =c¢c(-3, -2, -1, 0, 1, 2, 3),
c(o, 0, 0, o0, 2, 0, 0),
c(2.7, 2.5, 0.6, 0.7, 0.9, 1.2, 5)

)
df$huber_penalty <- huber_sf(x = df$x, y = df$y, a = df$a)

print(df)

interval_sf Interval scoring function (Winkler scoring function)

Description

The function interval_sf computes the interval scoring function (Winkler scoring function) when y
materializes and [z, 2] is the central 1 — p prediction interval.

The interval scoring function is defined by eq. (43) in Gneiting and Raftery (2007).

Usage

interval_sf(x1, x2, y, p)


https://doi.org/10.1214/aoms/1177703732
https://doi.org/10.1214/21-EJS1957
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Arguments
x1 Predictive quantile (prediction) at level p/2. It can be a vector of length n (must
have the same length as y).
x2 Predictive quantile (prediction) at level 1 — p/2. It can be a vector of length n
(must have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x1).
p It can be a vector of length n (must have the same length as ).
Details

The interval scoring function is defined by:

S(x1,22,9,p) = (w2 — 1) + (2/p) (21 — Y)Wy < 21} + (2/p)(y — 22){y > 22}

Domain of function:

r1 €R
To € R
r1 < X2
yeR

O<p<l1

Range of function:
S($1;$23y7p) Z O,V.Tl,l'g,y € R,l’l < Zx2,p € (03 1)

Value

Vector of interval losses.

Note

For the definition of quantiles, see Koenker and Bassett Jr (1978).
The interval scoring function is negatively oriented (i.e. the smaller, the better).

The interval scoring function is strictly F-consistent for the central 1 — p prediction interval [z1, 2].
21 and x5 are quantile functionals at levels p/2 and 1 — p/2 respectively.

IF is the family of probability distributions F' for which Er[Y] exists and is finite (Dunsmore 1968;
Winkler 1972; Gneiting and Raftery 2007; Winkler and Murphy 1979; Fissler and Ziegel 2016;
Brehmer and Gneiting 2021).
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Examples

# Compute the interval scoring function (Winkler scoring function).

df <- data.frame(

y = rep(x = 0, times = 6),

x1 = c(-3, -2, -1, 0, 1, 2),

x2 =c(1, 2, 3, 4, 5, 6),

p = rep(x = c(0.05, ©0.95), times = 3)
)

df$interval_penalty <- interval_sf(x1 = df$x1, x2 = df$x2, y = df$y, p = df$p)

print(df)

maelog_sf MAE-LOG scoring function

Description

The function maelog_sf computes the MAE-LOG scoring function when y materializes and x is the
predictive median functional.

The MAE-LOG scoring function is defined by eq. (11) in Patton (2011).

Usage

maelog_sf(x, y)


https://doi.org/10.3150/20-BEJ1298
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https://doi.org/10.1198/016214506000001437
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Arguments
X Predictive median functional (prediction). It can be a vector of length n (must
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as ).
Details

The MAE-LOG scoring function is defined by:

S(x,y) == [log(z/y)]

Domain of function:

x>0

y>0

Range of function:

S(x,y) >0,Vz,y >0

Value

Vector of MAE-LOG losses.

Note

For details on the MAE-LOG scoring function, see Gneiting (2011) and Patton (2011).
The median functional is the median of the probability distribution F' of y (Gneiting 2011).
The MAE-LOG scoring function is negatively oriented (i.e. the smaller, the better).

The MAE-LOG scoring function is strictly F-consistent for the median functional. F is the family
of probability distributions F' for which Er[log(Y")] exists and is finite (Thomson 1979; Saerens
2000; Gneiting 2011).
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Econometrics 160(1):246-256. doi:10.1016/j.jeconom.2010.03.034.

Saerens M (2000) Building cost functions minimizing to some summary statistics. /[EEE Transac-
tions on Neural Networks 11(6):1263—-1271. doi:10.1109/72.883416.

Thomson W (1979) Eliciting production possibilities from a well-informed manager. Journal of
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Examples

# Compute the MAE-LOG scoring function.
df <- data.frame(
y = rep(x = 2, times = 3),
x =1:3
)
df$mae_log_penalty <- maelog_sf(x = df$x, y = dfsy)

print(df)

maesd_sf MAE-SD scoring function

Description

The function maesd_sf computes the MAE-SD scoring function when y materializes and x is the
predictive median functional.

The MAE-SD scoring function is defined by eq. (12) in Patton (2011).

Usage

maesd_sf(x, y)

Arguments
X Predictive median functional (prediction). It can be a vector of length n (must
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The MAE-SD scoring function is defined by:

S(x,y) = |2'/? —y'/?|

Domain of function:

x>0

y>0

Range of function:

S(z,y) > 0,Yx,y >0
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Value

Vector of MAE-SD losses.

Note

For details on the MAE-SD scoring function, see Gneiting (2011) and Patton (2011).
The median functional is the median of the probability distribution F' of y (Gneiting 2011).
The MAE-SD scoring function is negatively oriented (i.e. the smaller, the better).

The MAE-SD scoring function is strictly F-consistent for the median functional. [ is the family of
probability distributions F' for which E[Y /2] exists and is finite (Thomson 1979; Saerens 2000;
Gneiting 2011).

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. Journal of
Econometrics 160(1):246-256. doi:10.1016/j.jeconom.2010.03.034.

Saerens M (2000) Building cost functions minimizing to some summary statistics. /EEE Transac-
tions on Neural Networks 11(6):1263—-1271. doi:10.1109/72.883416.

Thomson W (1979) Eliciting production possibilities from a well-informed manager. Journal of
Economic Theory 20(3):360-380. doi:10.1016/00220531(79)900425.

Examples

# Compute the MAE-SD scoring function.

df <- data.frame(
y = rep(x = 2, times = 3),
X 1:3

)
df$mae_sd_penalty <- maesd_sf(x = df$x, y = df$y)

print(df)

mean_if Mean identification function

Description

The function mean_if computes the mean identification function , when y materializes and x is the
predictive mean.

The mean identification function is defined in Table 9 in Gneiting (2011).


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1016/j.jeconom.2010.03.034
https://doi.org/10.1109/72.883416
https://doi.org/10.1016/0022-0531%2879%2990042-5
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Usage

mean_if(x, y)

Arguments
X Predictive expectile (prediction) at level p. It can be a vector of length n (must
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The mean identification function is defined by:

Viz,y)=z—y

Domain of function:

r€eR

yeR

Range of function:
V(z,y) €eR

Value

Vector of values of the mean identification function.

Note

The mean functional is the mean E[Y] of the probability distribution F of y (Gneiting 2011).

The mean identification function is a strict [F-identification function for the mean functional. (Gneit-
ing 2011; Fissler and Ziegel 2016; Dimitriadis et al. 2024).

FF is the family of probability distributions F' for which Er[Y] exists and is finite (Gneiting 2011;
Fissler and Ziegel 2016; Dimitriadis et al. 2024).

References
Dimitriadis T, Fissler T, Ziegel JF (2024) Osband’s principle for identification functions. Statistical
Papers 65:1125-1132. doi:10.1007/s0036202301428x.

Fissler T, Ziegel JF (2016) Higher order elicitability and Osband’s principle. The Annals of Statistics
44(4):1680-1707. doi:10.1214/16A0S1439.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Newey WK, Powell JL (1987) Asymmetric least squares estimation and testing. Econometrica
55(4):819-847. doi:10.2307/1911031.


https://doi.org/10.1007/s00362-023-01428-x
https://doi.org/10.1214/16-AOS1439
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.2307/1911031
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Examples

# Compute the mean identification function.
df <- data.frame(

y = rep(x = 0, times = 3),

x = c(-2, 0, 2)
)

df$mean_if <- mean_if(x = df$x, y = df$y)

mv_if Mean - variance identification function

Description

The function mv_if computes the mean - variance identification function, when y materializes, z1
is the predictive mean and x5 is the predictive variance.

The mean - variance identification function is defined in proposition (3.11) in Fissler and Ziegel
(2019).

Usage
mv_if(x1, x2, y)

Arguments
x1 Predictive mean (prediction). It can be a vector of length n (must have the same
length as ).
X2 Predictive variance (prediction). It can be a vector of length n (must have the
same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as ).
Details

The mean - variance identification function is defined by:

V(z1,22,y) == (21 — y, 22 + 93% - 312)

Domain of function:

r1 €R
zo >0

y €R
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Value

Matrix of mean - variance values of the identification function.

Note

The mean functional is the mean Ex[Y] of the probability distribution F' of y (Gneiting 2011).

The variance functional is the variance Varz[Y] := Er[Y?] — (Er[Y])? of the probability distribu-
tion F' of y (Gneiting 2011)

The mean - variance identification function is a strict F-identification function for the pair (mean,
variance) functional (Gneiting 2011; Fissler and Ziegel 2019; Dimitriadis et al. 2024).

FF is the family of probability distributions F' for which Er[Y] and Er[Y?] exist and are finite
(Gneiting 2011; Fissler and Ziegel 2019; Dimitriadis et al. 2024).

References

Dimitriadis T, Fissler T, Ziegel JF (2024) Osband’s principle for identification functions. Statistical
Papers 65:1125-1132. doi:10.1007/s0036202301428x.

Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Jour-
nal of Statistics 13(1):1166-1211. doi:10.1214/19EJS1552.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746—762. doi:10.1198/jasa.2011.r10138.

Examples

# Compute the mean - variance identification function.

df <- data.frame(
y = rep(x = 0, times = 6),
x1 = c(2, 2, -2, -2, 0, 0),
x2 =c(1, 2,1, 2,1, 2)

)

v <- as.data.frame(mv_if(x1 = df$x1, x2 = df$x2, y = dfsy))

print(cbind(df, v))

mv_sf Mean - variance scoring function

Description

The function mv_sf computes the mean - variance scoring function, when y materializes, x; is the
predictive mean and z» is the predictive variance.

The mean - variance scoring function is defined by eq. (3.11) in Fissler and Ziegel (2019).


https://doi.org/10.1007/s00362-023-01428-x
https://doi.org/10.1214/19-EJS1552
https://doi.org/10.1198/jasa.2011.r10138
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Usage

mv_sf

mv_sf(x1, x2, y)

Arguments

x1

X2

Details

Predictive mean (prediction). It can be a vector of length n (must have the same
length as y).

Predictive variance (prediction). It can be a vector of length n (must have the
same length as y).

Realization (true value) of process. It can be a vector of length n (must have the
same length as x).

The mean - variance scoring function is defined by:

S(w1,m2,y) == a5 (2] — 222 — 231y + ¥°)

Domain of function:

Value

1 €R

zo >0

yeR

Vector of mean - variance losses.

Note

The mean functional is the mean E[Y] of the probability distribution F of y (Gneiting 2011).

The variance functional is the variance Varz[Y] := Er[Y?] — (Er[Y])? of the probability distribu-
tion F' of y (Gneiting 2011)

The mean - variance scoring function is negatively oriented (i.e. the smaller, the better).

The mean - variance scoring function is strictly consistent for the pair (mean, variance) functional
(Osband 1985, p.9; Gneiting 2011; Fissler and Ziegel 2019).

References

Fissler T, Ziegel JF (2019) Order-sensitivity and equivariance of scoring functions. Electronic Jour-
nal of Statistics 13(1):1166—1211. doi:10.1214/19EJS1552.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Osband KH (1985) Providing Incentives for Better Cost Forecasting. PhD thesis, University of
California, Berkeley. doi:10.5281/zenodo.4355667.


https://doi.org/10.1214/19-EJS1552
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.5281/zenodo.4355667
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Examples

# Compute the mean - variance scoring function.

df <- data.frame(
y = rep(x = 0, times = 6),
x1 = c(2, 2, -2, -2, 0, @),
x2 =c(1, 2,1, 2,1, 2

)

df$mv_penalty <- mv_sf(x1 = df$x1, x2 = df$x2, y = dfsy)

print(df)

nmoment_if n-th moment identification function

Description

The function nmoment_if computes the n-th moment identification function, when y materializes
and z is the predictive n-th moment.

The expectile identification function is defined in Table 9 in Gneiting (2011) by setting r(¢) = ¢"
and s(t) = 1.

Usage

nmoment_if(x, y, n)

Arguments
X Predictive n-th moment. It can be a vector of length m (must have the same
length as ).
y Realization (true value) of process. It can be a vector of length m (must have
the same length as x).
n n) is the moment order. It can be a vector of length m (must have the same
length as x).
Details

The n-th moment identification function is defined by:
n

V(z,y,n) =z—y

Domain of function:

reR
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yeR

neN

Value

Vector of values of the n-th moment identification function.

Note

The n-th moment functional is the expectation Ex[Y™] of the probability distribution F" of y.

The n-th moment identification function is a strict [F-identification function for the n-th moment

functional (Gneiting 2011; Fissler and Ziegel 2016).

FF is the family of probability distributions F’ for which E[Y™] exists and is finite (Gneiting
Fissler and Ziegel 2016).

References

2011;

Fissler T, Ziegel JF (2016) Higher order elicitability and Osband’s principle. The Annals of Statistics

44(4):1680-1707. doi:10.1214/16A0S1439.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-

sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Examples

# Compute the n-th moment scoring function.

df <- data.frame(
y = rep(x = 2, times = 6),
x=c(, 2, 3,1, 2, 3),
n=c(2, 2, 2, 3, 3, 3)

)
df$nmoment_if <- nmoment_if(x = df$x, y = df$y, n = df$n)

print(df)

nmoment_sf n-th moment scoring function

Description

The function nmoment_sf computes the n-th moment scoring function, when y materializes, and

Er[Y™] is the predictive n-th moment.

The n-th moment scoring function is defined by eq. (22) in Gneiting (2011) by setting r(¢)
s(t) = 1, ¢(t) = t and removing all terms that are not functions of x.

="


https://doi.org/10.1214/16-AOS1439
https://doi.org/10.1198/jasa.2011.r10138
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Usage

nmoment_sf(x,

Arguments

X

Details

43

y, n)

Predictive n-th moment. It can be a vector of length m (must have the same
length as ).

Realization (true value) of process. It can be a vector of length m (must have
the same length as x).

n) is the moment order. It can be a vector of length m (must have the same
length as x).

The n-th moment scoring function is defined by:

S(z,y,n) == —a® = 20(y" — )

Domain of function:

Value

r€eR

yeR

néeN

Vector of n-th moment losses.

Note

The n-th moment functional is the expectation Ex[Y™] of the probability distribution F' of y.

The n-th moment scoring function is negatively oriented (i.e. the smaller, the better).

The n-th moment scoring function is strictly F-consistent for the n-th moment functional Ex[Y™]
(Theorem 8 in Gneiting 2011). T is the family of probability distributions F' for which Er [Y],
Ep[Y?], Ep[Y"] and Er[Y"*!] exist and are finite (Theorem 8 in Gneiting 2011).

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.


https://doi.org/10.1198/jasa.2011.r10138
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Examples

# Compute the n-th moment scoring function.
df <- data.frame(

y = rep(x = 2, times = 6),

x =c(l, 2, 3,1, 2, 3),

n=c(2, 2, 2, 3, 3, 3)
)

df$nmoment_penalty <- nmoment_sf(x = df$x, y = df$y, n = df$n)

print(df)

obsweighted_sf Observation-weighted scoring function

Description

The function obsweighted_sf computes the observation-weighted scoring function when y materi-
Er[Y?]
EplY]

The observation-weighted scoring function is defined in p. 752 in Gneiting (2011).

alizes and z is the predictive functional.

Usage
obsweighted_sf(x, y)

Arguments
. . Ep[Y? . .y
X Predictive Er[Y] functional (prediction). It can be a vector of length n (must
F
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The observation-weighted scoring function is defined by:

S(z,y) = ylz—y)*

Domain of function:

x>0

y>0
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Range of function:
S(Z,y) Z O,Vx,y >0

Value

Vector of observation-weighted errors.

Note

For details on the observation-weighted scoring function, see Gneiting (2011).

The observation-weighted scoring function is negatively oriented (i.e. the smaller, the better).
Er[Y?]

Er[Y]

The observation-weighted scoring function is strictly consistent for the functional.

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Examples

# Compute the observation-weighted scoring function.

df <- data.frame(
y = rep(x = 2, times = 3),
x =1:3

)

df$squared_relative_error <- obsweighted_sf(x = df$x, y = df$y)

print(df)

quantile_if Quantile identification function

Description

The function quantile_if computes the quantile identification function at a specific level p, when y
materializes and x is the predictive quantile at level p.

The quantile identification function is defined in Table 9 in Gneiting (2011).

Usage

quantile_if(x, y, p)


https://doi.org/10.1198/jasa.2011.r10138
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Arguments
X Predictive quantile (prediction) at level p. It can be a vector of length n (must
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
p It can be a vector of length n (must have the same length as y).
Details

The quantile identification function is defined by:

V(z,y,p) :==Hx >y} —p

Domain of function:

r€eR
yeR

0<p<l1

Range of function:

V(x,y,p) € (_17 1)

Value

Vector of values of the quantile identification function.

Note

For the definition of quantiles, see Koenker and Bassett Jr (1978).

The quantile identification function is a strict IF,,-identification function for the p-quantile functional
(Gneiting 2011; Fissler and Ziegel 2016; Dimitriadis et al. 2024).

IF,, is the family of probability distributions F' for which there exists an y with F(y) = p (Gneiting
2011; Fissler and Ziegel 2016; Dimitriadis et al. 2024).

References
Dimitriadis T, Fissler T, Ziegel JF (2024) Osband’s principle for identification functions. Statistical
Papers 65:1125-1132. doi:10.1007/s0036202301428x.

Fissler T, Ziegel JF (2016) Higher order elicitability and Osband’s principle. The Annals of Statistics
44(4):1680-1707. doi:10.1214/16 A0S 1439.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Koenker R, Bassett Jr G (1978) Regression quantiles. Econometrica 46(1):33-50. doi:10.2307/
1913643.


https://doi.org/10.1007/s00362-023-01428-x
https://doi.org/10.1214/16-AOS1439
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.2307/1913643
https://doi.org/10.2307/1913643
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Examples

# Compute the quantile identification function.

df <- data.frame(
y = rep(x = 0, times = 6),
x =c(2, 2, -2, -2, 0, 0),
p = rep(x = c(0.05, ©0.95), times = 3)

)

df$quantile_if <- quantile_if(x = df$x, y = df$y, p = df$p)

quantile_sf Asymmetric piecewise linear scoring function (quantile scoring func-
tion, quantile loss function)

Description

The function quantile_sf computes the asymmetric piecewise linear scoring function (quantile scor-
ing function) at a specific level p, when y materializes and x is the predictive quantile at level p.

The asymmetric piecewise linear scoring function is defined by eq. (24) in Gneiting (2011).

Usage

quantile_sf(x, y, p)

Arguments
X Predictive quantile (prediction) at level p. It can be a vector of length n (must
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
p It can be a vector of length n (must have the same length as ).
Details

The assymetric piecewise linear scoring function is defined by:

S(z,y,p) == (H{zx >y} —p)(z —y)

or equivalently,

S(x,y,p) = plmax{—(z —y), 0} + (1 — p)| max{z —y,0}|

Domain of function:

r€eR
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y€eR

0<p<l1

Range of function:

S(z,y,p) > 0,Ve,y e R,p € (0,1)

Value

Vector of quantile losses.

Note

For the definition of quantiles, see Koenker and Bassett Jr (1978).
The asymmetric piecewise linear scoring function is negatively oriented (i.e. the smaller, the better).

The asymmetric piecewise linear scoring function is strictly F-consistent for the p-quantile func-
tional. F is the family of probability distributions F' for which Ex[Y] exists and is finite (Schlaifer
1961, p.196; Ferguson 1967, p.51; Thomson 1979; Saerens 2000; Gneiting 2011).

References

Ferguson TS (1967) Mathematical Statistics: A Decision-Theoretic Approach. Academic Press,
New York.

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Koenker R, Bassett Jr G (1978) Regression quantiles. Econometrica 46(1):33-50. doi:10.2307/
1913643.

Raiffa H,Schlaifer R (1961) Applied Statistical Decision Theory. Colonial Press, Clinton.

Saerens M (2000) Building cost functions minimizing to some summary statistics. /[EEE Transac-
tions on Neural Networks 11(6):1263—-1271. doi:10.1109/72.883416.

Thomson W (1979) Eliciting production possibilities from a well-informed manager. Journal of
Economic Theory 20(3):360-380. doi:10.1016/00220531(79)900425.

Examples

# Compute the asymmetric piecewise linear scoring function (quantile scoring
# function).

df <- data.frame(
y = rep(x = 0, times = 6),
x = c(2, 2, -2, -2, 0, ),
p = rep(x = c(0.05, 0.95), times

3
)

df$quantile_penalty <- quantile_sf(x = df$x, y = df$y, p = df$p)


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.2307/1913643
https://doi.org/10.2307/1913643
https://doi.org/10.1109/72.883416
https://doi.org/10.1016/0022-0531%2879%2990042-5
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print(df)

# The absolute error scoring function is twice the asymmetric piecewise linear
# scoring function (quantile scoring function) at level p = 0.5.

df <- data.frame(

y = rep(x = 0, times = 3),
X = C(_ZY 07 2)!
p = rep(x = c(0.5), times = 3)

)
df$quantile_penalty <- quantile_sf(x = df$x, y = df$y, p = df$p)
df$absolute_error <- aerr_sf(x = df$x, y = dfs$y)

print(df)

relerr_sf Relative error scoring function (MAE-PROP scoring function)

Description

The function relerr_sf computes the relative error scoring function when y materializes and z is the
predictive med) (F) functional.

The relative error scoring function is defined in Table 1 in Gneiting (2011).

The relative error scoring function is referred to as MAE-PROP scoring function in eq. (13) in
Patton (2011).

Usage

relerr_sf(x, y)

Arguments
X Predictive med(l)(F) functional (prediction). It can be a vector of length n
(must have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The relative error scoring function is defined by:

S(x,y) = [(z —y)/=|

Domain of function:
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x>0

y>0

Range of function:
S(x,y) >0,Vz,y >0

Value

Vector of relative errors.

Note

For details on the relative error scoring function, see Gneiting (2011).

The S-median functional, med® (F) is the median of a probability distribution whose density is
proportional to 32 f (), where f is the density of the probability distribution F' of y (Gneiting 2011).

The relative error scoring function is negatively oriented (i.e. the smaller, the better).

The relative error scoring function is strictly F(*)-consistent for the med”) (F") functional. F is
the family of probability distributions for which Ex[Y] exists and is finite. F(*) is the subclass
of probability distributions in IF, which are such that w(y) f(y), w(y) = y has finite integral over
(0, 00), and the probability distribution F(*) with density proportional to w(y) f(y) belongs to F
(see Theorems 5 and 9 in Gneiting 2011)

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Patton AJ (2011) Volatility forecast comparison using imperfect volatility proxies. Journal of
Econometrics 160(1):246-256. doi:10.1016/j.jeconom.2010.03.034.

Examples

# Compute the relative error scoring function.
df <- data.frame(

y = rep(x = 2, times = 3),

x =1:3
)

df$relative_error <- relerr_sf(x = df$x, y = df$y)

print(df)


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1016/j.jeconom.2010.03.034
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serr_sf Squared error scoring function

Description

The function serr_sf computes the squared error scoring function when y materializes and x is the
predictive mean functional.

The squared error scoring function is defined in Table 1 in Gneiting (2011).

Usage

serr_sf(x, y)

Arguments
X Predictive mean functional (prediction). It can be a vector of length n (must
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The squared error scoring function is defined by:

S(z,y) = (z —y)*

Domain of function:

reR

yeR

Range of function:
S(z,y) > 0,vz,y €R

Value

Vector of squared errors.
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Note
For details on the squared error scoring function, see Savage (1971), Gneiting (2011).
The mean functional is the mean E[Y] of the probability distribution F of y (Gneiting 2011).
The squared error scoring function is negatively oriented (i.e. the smaller, the better).

The squared error scoring function is strictly F-consistent for the mean functional. I is the family of
probability distributions F' for which the second moment exists and is finite (Savage 1971; Gneiting
2011).

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Savage LJ (1971) Elicitation of personal probabilities and expectations. Journal of the American
Statistical Association 66(337):783-810. doi:10.1080/01621459.1971.10482346.

Examples

# Compute the squarer error scoring function.

df <- data.frame(

y = rep(x = 0, times = 5),
X = -2:2

)

df$squared_error <- serr_sf(x = df$x, y = df$y)

print(df)

sperr_sf Squared percentage error scoring function

Description

The function sperr_sf computes the squared percentage error scoring function when y materializes

EplY !
and z is the predictive EM

The squared percentage error scoring function is defined in p. 752 in Gneiting (2011).

functional.

Usage

sperr_sf(x, y)


https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1080/01621459.1971.10482346

sperr_sf 53

Arguments
.. EplY . .
X Predictive m functional (prediction). It can be a vector of length n (must
F
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as x).
Details

The squared percentage error scoring function is defined by:

S(x,y) = ((x—y)/y)?

Domain of function:

x>0

y>0

Range of function:
S(x,y) >0,Va,y >0

Value

Vector of squared percentage errors.

Note
For details on the squared percentage error scoring function, see Park and Stefanski (1998) and
Gneiting (2011).

The squared percentage error scoring function is negatively oriented (i.e. the smaller, the better).

Y1

The squared percentage error scoring function is strictly consistent for the E% functional.
F

References

Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Park H, Stefanski LA (1998) Relative-error prediction. Statistics and Probability Letters 40(3):227—
236. doi:10.1016/S01677152(98)000881.
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Examples

# Compute the squared percentage error scoring function.
df <- data.frame(

y = rep(x = 2, times = 3),

x =1:3
)

df$squared_percentage_error <- sperr_sf(x = df$x, y = df$y)

print(df)

srelerr_sf Squared relative error scoring function

Description

The function srelerr_sf computes the squared relative error scoring function when y materializes
Er[Y?]
Er[Y]
The squared relative error scoring function is defined in p. 752 in Gneiting (2011).

functional.

and z is the predictive

Usage

srelerr_sf(x, y)

Arguments
. rlY?] . .
X Predictive ] functional (prediction). It can be a vector of length n (must
F
have the same length as y).
y Realization (true value) of process. It can be a vector of length n (must have the
same length as ).
Details

The squared relative error scoring function is defined by:

S(z,y) = ((z — y)/2)?

Domain of function:

x>0

y>0

Range of function:

S(z,y) > 0,Vx,y >0
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Value

Vector of squared relative errors.

Note

For details on the squared relative error scoring function, see Gneiting (2011).

The squared relative error scoring function is negatively oriented (i.e. the smaller, the better).
Er[Y?]
Er[Y]

functional.

The squared relative error scoring function is strictly consistent for the

References
Gneiting T (2011) Making and evaluating point forecasts. Journal of the American Statistical As-
sociation 106(494):746-762. doi:10.1198/jasa.2011.r10138.

Examples

# Compute the squared percentage error scoring function.
df <- data.frame(
y = rep(x = 2, times = 3),
x =1:3
)
df$squared_relative_error <- srelerr_sf(x = df$x, y = df$y)

print(df)


https://doi.org/10.1198/jasa.2011.r10138
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