Package 'spatialTIME'

May 30, 2024

Title Spatial Analysis of Vectra Immunoflourescent Data

Version 1.3.4-4

Description Visualization and analysis of Vectra Immunoflourescent data. Options for calculating both the univariate and bivariate Ripley's K are included. Calculations are performed using a permutation-based approach presented by Wilson et al. doi:10.1101/2021.04.27.21256104>.

License MIT + file LICENSE

Imports magrittr, dplyr, tidyr, ggplot2, scales, grDevices, purrr, spatstat.univar, spatstat.geom, spatstat.explore, RColorBrewer, furrr, future, tidyselect, crayon, pbmcapply, dixon, tibble, stringr

Suggests knitr, devtools, rmarkdown, testthat (>= 3.0.0), gridExtra, pheatmap

VignetteBuilder knitr

URL https://github.com/FridleyLab/spatialTIME

BugReports https://github.com/FridleyLab/spatialTIME/issues

NeedsCompilation no

Config/testthat/edition 3

RoxygenNote 7.2.3

Depends R (>= 2.10)

LazyData true

Encoding UTF-8

Author Jordan Creed [aut],

Ram Thapa [aut],

Christopher Wilson [aut],

Alex Soupir [aut],

Oscar Ospina [aut],

Julia Wrobel [aut],

Brooke Fridley [cph],

Fridley Lab [cre]

bi_NN_G

Maintainer Fridley Lab <fridley.lab@moffitt.org>
Repository CRAN

Date/Publication 2024-05-30 02:40:03 UTC

R topics documented:

	bi_NN_G
	bi_pair_correlation
	bi_ripleys_k
	bi_ripleys_k_WSI
	compute_metrics
	create_mif
	dixons_s
	example_clinical
	example_spatial
	example_summary
	interaction_variable
	merge_mifs
	NN_G
	pair_correlation
	plot_immunoflo
	ripleys_k
	subset_mif
Index	24

bi_NN_G

Bivariate Nearest Neighbor G(r)

Description

Bivariate Nearest Neighbor G(r)

Usage

```
bi_NN_G(
    mif,
    mnames,
    r_range = 0:100,
    num_permutations = 50,
    edge_correction = "rs",
    keep_perm_dis = FALSE,
    workers = 1,
    overwrite = FALSE,
    xloc = NULL,
    yloc = NULL
)
```

bi_NN_G 3

Arguments

mif object of class 'mif' created by function 'create_mif()' mnames character vector of column names within the spatial files, indicating whether a cell row is positive for a phenotype r_range numeric vector of radii around marker positive cells which to use for G(r) num_permutations integer number of permutations to use for estimating core specific complete spatial randomness (CSR) edge_correction character vector of edge correction methods to use: "rs", "km" or "han" keep_perm_dis boolean for whether to summarise permutations to a single value or maintain each permutations result workers integer number for the number of CPU cores to use in parallel to calculate all samples/markers boolean whether to overwrite previous run of NN G(r) or increment "RUN" and overwrite maintain previous measurements xloc, yloc the x and y location columns in the spatial files that indicate the center of the respective cells

Value

object of class 'mif' containing a new slot under 'derived' got nearest neighbor distances

Examples

```
x <- spatialTIME::create_mif(clinical_data = spatialTIME::example_clinical %>%
 dplyr::mutate(deidentified_id = as.character(deidentified_id)),
 sample_data = spatialTIME::example_summary %>%
 dplyr::mutate(deidentified_id = as.character(deidentified_id)),
 spatial_list = spatialTIME::example_spatial[1:2],
 patient_id = "deidentified_id",
 sample_id = "deidentified_sample")
mnames_good <- c("CD3..Opal.570..Positive", "CD8..Opal.520..Positive",</pre>
  "FOXP3..Opal.620..Positive", "PDL1..Opal.540..Positive",
  "PD1..Opal.650..Positive", "CD3..CD8.", "CD3..FOXP3.")
## Not run:
x2 = bi_NN_G(mif = x, mnames = mnames_good[1:2],
      r_range = 0:100, num_permutations = 10,
      edge_correction = "rs", keep_perm_dis = FALSE,
      workers = 1, overwrite = TRUE)
## End(Not run)
```

bi_pair_correlation

bi_pair_correlation Bivariate Pair Correlation Function

Description

Bivariate Pair Correlation Function

Usage

```
bi_pair_correlation(
    mif,
    mnames,
    r_range = NULL,
    num_permutations = 100,
    edge_correction = "translation",
    keep_permutation_distribution = FALSE,
    workers = 1,
    overwrite = FALSE,
    xloc = NULL,
    yloc = NULL,
    ...
)
```

Arguments

mif object of class 'mif'

mnames character vector or dataframe with 2 columns containing markers/marker com-

binations to run

r_range numeric vector radii to measure

num_permutations

integer for the number of permutations to run

edge_correction

character string for which edge correction to implement for Ripley's K

keep_permutation_distribution

boolean whether to summarise the permutations or keep all

workers integer for number of cores to use when calculating

overwrite boolean for whether to overwrite existing bivariate pair correlation results

xloc x location column in spatial files yloc y location column in spatial files

... other variables to pass to '[spatstat.explore::pcfcross]'

Value

'mif' object with the bivariate_pair_correlation slot filled

bi_ripleys_k 5

bi_ripleys_k

Bivariate Ripley's K

Description

Bivariate Ripley's K function within spatialTIME, 'bi_ripleys_k' is a function that takes in a 'mIF' object, along with some parameters like marker names of interest and range of radii in which to assess bivariate clustering or colocalization. In 1.3.3.3 we have introduced the ability to forsgo the need for permutations with the implementation of the exact CSR estimate. This is both faster and being the exact CSR, produces an exact degree of clustering in the spatial files.

Due to the availability of whole slide images (WSI), there's a possibility users will be running bivariate Ripley's K on samples that have millions of cells. When doing this, keep in mind that a nearest neighbor matrix with *n* cell is *n* by *n* in size and therefore easily consumers high performance compute levels of RAM. To combat this, we have implemented a tiling method that performs counts for small chunks of the distance matrix at a time before finally calculating the bivariate Ripley's K value on the total counts. When doing this there are now 2 import parameters to keep in mind. The 'big' parameter is the size of the tile to use. We have found 1000 to be a good number that allows for high number of cores while maintaining low RAM usage. The other important parameter when working with WSI is nlarge which is the fall over for switching to no edge correction. The spatstat.explore::Kest univariate Ripley's K uses a default of 3000 but we have defaulted to 1000 to keep compute minimized as edge correction uses large amounts of RAM over 'none'.

Usage

```
bi_ripleys_k(
    mif,
    mnames,
    r_range = 0:100,
    edge_correction = "translation",
    num_permutations = 50,
    permute = FALSE,
    keep_permutation_distribution = FALSE,
    overwrite = TRUE,
    workers = 6,
    xloc = NULL,
    yloc = NULL,
    force = FALSE
)
```

Arguments

mif mIF object with spatial data frames, clinical, and per-sample summary informa-

tion

mnames vector of column names for phenotypes or data frame of marker combinations

r_range vector range of radii to calculate co-localization *K*

6 bi_ripleys_k_WSI

edge_correction

character edge_correction method, one of "translation", "border", "or none"

num_permutations

integer number of permutations to estimate CSR

permute whether or not to use permutations to estimate CSR (TRUE) or to calculate exact

CSR (FALSE)

keep_permutation_distribution

boolean as to whether to summarise permutations to mean

overwrite boolean as to whether to replace existing bivariate_Count if exists

workers integer number of CPU workers to use

xloc, yloc the x and y positions that correspond to cells. If left as NULL, XMin, XMax,

YMin, and YMax must be present in the spatial files

force logical whether or not to continue if sample has more than 10,000 cells

Value

mif object with bivariate Ripley's K calculated

Examples

bi_ripleys_k_WSI

Bivariate Ripley's K for Whole Slide Images

Description

Bivariate Ripley's K function within spatialTIME, 'bi_ripleys_k' is a function that takes in a 'mIF' object, along with some parameters like marker names of interest and range of radii in which to assess bivariate clustering or colocalization. In 1.3.3.3 we have introduced the ability to forsgo the need for permutations with the implementation of the exact CSR estimate. This is both faster and being the exact CSR, produces an exact degree of clustering in the spatial files.

Due to the availability of whole slide images (WSI), there's a possibility users will be running bivariate Ripley's K on samples that have millions of cells. When doing this, keep in mind that a

bi_ripleys_k_WSI 7

nearest neighbor matrix with *n* cell is *n* by *n* in size and therefore easily consumers high performance compute levels of RAM. To combat this, we have implemented a tiling method that performs counts for small chunks of the distance matrix at a time before finally calculating the bivariate Ripley's K value on the total counts. When doing this there are now 2 import parameters to keep in mind. The 'big' parameter is the size of the tile to use. We have found 1000 to be a good number that allows for high number of cores while maintaining low RAM usage. The other important parameter when working with WSI is nlarge which is the fall over for switching to no edge correction. The spatstat.explore::Kest univariate Ripley's K uses a default of 3000 but we have defaulted to 1000 to keep compute minimized as edge correction uses large amounts of RAM over 'none'.

Usage

```
bi_ripleys_k_WSI(
    mif,
    mnames,
    r_range = 0:100,
    edge_correction = "translation",
    num_permutations = 50,
    permute = FALSE,
    keep_permutation_distribution = FALSE,
    overwrite = TRUE,
    workers = 6,
    big = 1000,
    nlarge = 1000,
    xloc = NULL,
    yloc = NULL
)
```

Arguments

mif mIF object with spatial data frames, clinical, and per-sample summary informa-

tion

mnames vector of column names for phenotypes or data frame of marker combinations

r_range vector range of radii to calculate co-localization *K*

edge_correction

character edge_correction method, one of "translation", or none"

num_permutations

integer number of permutations to estimate CSR

permute whether or not to use permutations to estimate CSR (TRUE) or to calculate exact

CSR (FALSE)

keep_permutation_distribution

boolean as to whether to summarise permutations to mean

overwrite boolean as to whether to replace existing bivariate_Count if exists

workers integer number of CPU workers to use

big integer used as the threshold for subsetting large samples, default is 1000 either

i or *j*

8 compute_metrics

nlarge	number of cells in either *i* or *j* to flip to no edge correction - at small (relative to whole spatial region) *r* values differences in results between correction methods is negligible so running a few samples is recommended. Perhaps compute outweighs small differences in correction methods.
xloc	the x and y positions that correspond to cells. If left as NULL, XMin, XMax, YMin, and YMax must be present in the spatial files
yloc	the x and y positions that correspond to cells. If left as NULL, XMin, XMax, YMin, and YMax must be present in the spatial files

Value

mif object with bivariate Ripley's K calculated

Examples

compute_metrics

Calculate Count Based Measures and NN Measures of Spatial Clustering for IF data

Description

This function calculates count based Measures (Ripley's K, Besag L, and Marcon's M) of IF data to characterize correlation of spatial point process. For neareast neighbor calculations of a given cell type, this function computes proportion of cells that have nearest neighbor less than r for the observed and permuted point processes.

Usage

```
compute_metrics(
  mif,
  mnames,
  r_range = seq(0, 100, 50),
  num_permutations = 50,
```

compute_metrics 9

```
edge_correction = c("translation"),
method = c("K"),
k_trans = "none",
keep_perm_dis = FALSE,
workers = 1,
overwrite = FALSE,
xloc = NULL,
yloc = NULL,
exhaustive = T
```

Arguments

mif An MIF object

mnames Character vector of marker names to estimate degree of spatial clustering.

r_range Numeric vector of potential r values this range must include 0.

num_permutations

Numeric value indicating the number of permutations used. Default is 50.

edge_correction

Character vector indicating the type of edge correction to use. Options for count based include "translation" or "isotropic" and for nearest neighboroOptions in-

clude "rs" or "hans".

method Character vector indicating which count based measure (K, BiK, G, BiG) used

to estimate the degree of spatial clustering. Description of the methods can be

found in Details section.

k_trans Character value of the transformation to apply to count based metrics (none, M,

or L)

keep_perm_dis Logical value determining whether or not to keep the full distribution of per-

muted K or G values

workers Integer value for the number of workers to spawn

overwrite Logical value determining if you want the results to replace the current output

(TRUE) or be to be appended (FALSE).

xloc a string corresponding to the x coordinates. If null the average of XMin and

XMax will be used

yloc a string corresponding to the y coordinates. If null the average of YMin and

YMax will be used

exhaustive whether or not to compute all combinations of markers

Value

Returns a data.frame

Theoretical CSR

Expected value assuming complete spatial randomnessn

Permuted CSR Average observed K, L, or M for the permuted point process

Observed value for the observed point process

10 create_mif

Degree of Clustering Permuted

Degree of spatial clustering where the reference is the permutated estimate of CSR

Degree of Clustering Theoretical

Degree of spatial clustering where the reference is the theoretical estimate of CSR

Examples

```
#Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")

# Define the set of markers to study
mnames <- c("CD3..Opal.570..Positive", "CD8..Opal.520..Positive",
"FOXP3..Opal.620..Positive", "CD3..CD8.", "CD3..FOXP3.")

# Ripley's K and nearest neighbor G for all markers with a neighborhood size
# of 10,20,...,100 (zero must be included in the input).</pre>
```

create_mif

Create Multiplex Immunoflourescent object

Description

Creates an MIF object for use in spatialIF functions

Usage

```
create_mif(
  clinical_data,
  sample_data,
  spatial_list = NULL,
  patient_id = "patient_id",
  sample_id = "image_tag"
)
```

dixons_s

Arguments

clinical_data	A data frame containing patient level data with one row per participant.
sample_data	A data frame containing sample level data with one row per sample. Should at a minimum contain a 2 columns: one for sample names and one for the corresponding patient name.
spatial_list	A named list of data frames with the spatial data from each sample making up each individual data frame
patient_id	A character string indicating the column name for patient id in sample and clinical data frames.
sample_id	A character string indicating the column name for sample id in the sample data frame

Value

Returns a custom MIF

clinical	Data frame of clinical data
sample	Data frame of sample data
spatial	Named list of spatial data
derived	List of data derived using the MIF object
patient_id	The column name for sample id in the sample data frame with the clinical data
sample_id	The column name for sample id in the sample data frame to merge with the spatial data

Examples

```
#Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")
```

dixons_s	Dixon's S Segregation Statistic	
----------	---------------------------------	--

Description

This function processes the spatial files in the mif object, requiring a column that distinguishes between different groups i.e. tumor and stroma

dixons_s

Usage

```
dixons_s(
    mif,
    mnames,
    num_permutations = 1000,
    type = c("Z", "C"),
    workers = 1,
    overwrite = FALSE,
    xloc = NULL,
    yloc = NULL
)
```

Arguments

mif An MIF object

mnames vector of markers corresponding to spatial columns to check Dixon's S between

num_permutations

Numeric value indicating the number of permutations used. Default is 1000.

type a character string for the type that is wanted in the output which can be "Z" for

z-statistic results or "C" for Chi-squared statistic results

workers Integer value for the number of workers to spawn

overwrite Logical value determining if you want the results to replace the current output

(TRUE) or be to be appended (FALSE).

xloc a string corresponding to the x coordinates. If null the average of XMin and

XMax will be used

yloc a string corresponding to the y coordinates. If null the average of YMin and

YMax will be used

Value

Returns a data frame for Z-statistic

```
From
To
Obs.Count
Exp.Count
S
Z
p-val.Z
p-val.Nobs
Marker
```

Classifier Labeled Column Counts

```
Image.Tag
```

example_clinical 13

```
Returns a data frame for C-statistic
```

```
Segregation

df

Chi-sq
P.asymp
P.rand

Marker

Classifier Labeled Column Counts

Image.Tag
```

Examples

```
#' #Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")
```

example_clinical

Clinical variables of 229 patients

Description

A tibble wiith clinical characteristics for 229 patients

Usage

```
example_clinical
```

Format

```
A tibble with 229 rows and 6 variables
```

```
age age at diagnosis
race self-idenitifed race
sex patient biological sex
status disease status
deidenitifed_sample sample identifier
deidentified_id patient identifier
```

14 example_summary

example_spatial

Example list of 5 spatial TMA data

Description

A list containing 5 spatial data frames

Usage

example_spatial

Format

A list of 5 data frames:

- TMA_\[3,B\].tiff
- $TMA_{[6,F].tiff}$
- $TMA_{[7,B]}.tiff$
- $TMA_[9,K].tiff$
- $TMA_{[8,U]}.tiff$

example_summary

Marker summaries of 229 samples

Description

A dataset containing summaries of 25 markers and 229 samples

Usage

```
example_summary
```

Format

A tibble with 229 rows and 29 variables:

```
deidentified_id patient-level id
deidentified_sample sample-level id ...
```

interaction_variable 15

interaction_variable Bivariate Interaction Variable

Description

Single-cell spatial-protein metric introduce by Steinhart et al in https://doi.org/10.1158/1541-7786.mcr-21-0411

Usage

```
interaction_variable(
  mif,
  mnames,
  r_range = NULL,
  num_permutations = 100,
  keep_permutation_distribution = FALSE,
  workers = 1,
  overwrite = FALSE,
  xloc = NULL,
  yloc = NULL
)
```

Arguments

mif object of class 'mif'

mnames a character vector or table with 2 columns indicating the from-to markers to

assess

r_range numeric vector of radii for which to calculate the interaction variable at

num_permutations

integer for how many permutations to use to derive the interaction estimate under

CSR

keep_permutation_distribution

boolean for whether or not to keep all permutation results or average them

workers integer for the number of CPU cores to use for permutations, markers, and spa-

tial samples

overwrite boolean for whether to overwrite existing interaction variable results

xloc column name in spatial files containing the x location - if left NULL will average

columns XMin and XMax

yloc column name in spatial files containing the y location - if left NULL will average

columns YMin and YMax

Value

object of class mif with the interaction variable derive slot filled

16 merge_mifs

merge_mifs	Merge several MIF	objects together

Description

This function merges MIF objects that were run separately so they can be used as a single MIF. MIF objects don't *need* but *should* have the same column names in the summary file and clinical data file. The MIF objects **DO** need to have the same patient_id and sample_id.

Usage

```
merge_mifs(mifs = NULL, check.names = T)
```

Arguments

mifs A list of MIF objects to merge together

check.names whether to check names of spatial files and summary enttries

Value

Returns a new MIF object list

clinical_data clinical information from all
sample cell level summary data from all
spatial contains all spatial files from all MIFs

derived appended derived variables

patient_id patient_id from the first MIF - this is why it is important to have the same pa-

tient_id for all MIFs

sample_id sample_id from the first MIF - also important for all MIFs to have the same

sample_id

Examples

```
#merge several MIF objects
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")
x <- merge_mifs(mifs = list(x, x), check.names = FALSE)</pre>
```

NN_G 17

NN_G

Univariate Nearest Neighbor G(r)

Description

Univariate Nearest Neighbor G(r)

Usage

```
NN_G(
    mif,
    mnames,
    r_range = 0:100,
    num_permutations = 50,
    edge_correction = "rs",
    keep_perm_dis = FALSE,
    workers = 1,
    overwrite = FALSE,
    xloc = NULL,
    yloc = NULL
)
```

Arguments

mif object of class 'mif' created by function 'create_mif()'

mnames character vector of column names within the spatial files, indicating whether a

cell row is positive for a phenotype

r_range numeric vector of radii around marker positive cells which to use for G(r)

num_permutations

integer number of permutations to use for estimating core specific complete spa-

tial randomness (CSR)

edge_correction

character vector of edge correction methods to use: "rs", "km" or "han"

keep_perm_dis boolean for whether to summarise permutations to a single value or maintain

each permutations result

workers integer number for the number of CPU cores to use in parallel to calculate all

samples/markers

overwrite boolean whether to overwrite previous run of NN G(r) or increment "RUN" and

maintain previous measurements

xloc, yloc the x and y location columns in the spatial files that indicate the center of the

respective cells

Value

object of class 'mif' containing a new slot under 'derived' got nearest neighbor distances

18 pair_correlation

Examples

```
library(dplyr)
x <- spatialTIME::create_mif(clinical_data = spatialTIME::example_clinical %>%
    dplyr::mutate(deidentified_id = as.character(deidentified_id)),
    sample_data = spatialTIME::example_summary %>%
    dplyr::mutate(deidentified_id = as.character(deidentified_id)),
    spatial_list = spatialTIME::example_spatial,
    patient_id = "deidentified_id",
    sample_id = "deidentified_sample")

mnames_good <- c("CD3..Opal.570..Positive", "CD8..Opal.520..Positive",
    "FOXP3..Opal.620..Positive", "PDL1..Opal.540..Positive",
    "PD1..Opal.650..Positive", "CD3..CD8.", "CD3..FOXP3.")

x2 = NN_G(mif = x, mnames = mnames_good[1:2],
    r_range = 0:100, num_permutations = 10,
    edge_correction = "rs", keep_perm_dis = FALSE,
    workers = 1, overwrite = TRUE)</pre>
```

pair_correlation

Univariate Pair Correlation Function

Description

Implementation of the univariate pair correlation function from spatstat

Usage

```
pair_correlation(
   mif,
   mnames,
   r_range = NULL,
   num_permutations = 100,
   edge_correction = "translation",
   keep_permutation_distribution = FALSE,
   workers = 1,
   overwrite = FALSE,
   xloc = NULL,
   yloc = NULL,
   ...
)
```

Arguments

mif object of class 'mif'
mnames character vector of marker names
r_range numeric vector including 0. If ignored, 'spatstat' will decide range

plot_immunoflo 19

num_permutations

integer indicating how many permutations to run to determine CSR estimate

edge_correction

character string of edge correction to apply to Ripley's K estimation

keep_permutation_distribution

boolean for whether to keep the permutations or not

workers integer for number of threads to use when calculating metrics

overwrite boolean whether to overwrite existing results in the univariate_pair_correlation

slot

xloc column name of single x value yloc column name of single y value

... other parameters to provide 'spatstat::pcf'

The Pair Correlation Function uses the derivative of Ripley's K so it does take

slightly longer to calculate

'xloc' and 'yloc', if NULL, will be calculated from columns 'XMax', 'XMin',

'YMax', and 'YMin'.

Value

mif object with with the univariate_pair_correlation derived slot filled or appended to

plot_immunoflo

Generate plot of TMA point process

Description

This function generates plot of point process in rectangular or circular window.

Usage

```
plot_immunoflo(
   mif,
   plot_title,
   mnames,
   mcolors = NULL,
   cell_type = NULL,
   filename = NULL,
   path = NULL,
   xloc = NULL,
   yloc = NULL
)
```

20 ripleys_k

Arguments

mif MIF object created using create_MIF(). Character string or vector of character strings of variable name(s) to serve as plot_title plot title(s). mnames Character vector containing marker names. mcolors Character vector of color names to display markers in the plot. cell_type Character vector of cell type filename Character string of file name to store plots. Plots are generated as single .pdf file. Different path than file name or to use in conjunction with filename ??? path columns in the spatial files containing the x and y locations of cells. Default is xloc, yloc 'NULL' which will result in 'xloc' and 'yloc' being calculated from 'XMin'/'YMin' and 'XMax'/'YMax'

Value

mif object and the ggplot objects can be viewed form the derived slot of the mif object

Examples

```
#Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")

mnames_good <- c("CD3..Opal.570..Positive", "CD8..Opal.520..Positive",
"FOXP3..Opal.620..Positive", "PDL1..Opal.540..Positive",
"PD1..Opal.650..Positive", "CD3..CD8.", "CD3..FOXP3.")

x <- plot_immunoflo(x, plot_title = "deidentified_sample", mnames = mnames_good,
cell_type = "Classifier.Label")

x[["derived"]][["spatial_plots"]][[4]]</pre>
```

ripleys_k 21

Description

ripleys_k() calculates the emperical Ripley's K measurement for the cell types specified by mnames in the mIF object. This is very useful when exploring the spatial clustering of single cell types on TMA cores or ROI spots following processing with a program such as HALO for cell phenotyping.

In the 'ripleys_k' function, there is the ability to perform permutations in order to assess whether the clustering of a cell type is significant, or the ability to derive the exact CSR and forgo permutations for much faster sample processing. Permutations can be helpful if the significance of clustering wasnts to be identified - run 1000 permutations and if observed is outside 95-percentile then significant clustering. We, however, recommend using the exact CSR estimate due to speed.

Some things to be aware of when computing the exact Ripley's K estimate, if your spatial file is greater than the 'big' size, the edge correction will be converted to 'none' in order to save on resources and compute time. Due to the introduction of Whole Slide Imaging (WSI), this can easily be well over 1,000,000 cells, and calculating edge correction for these spatial files will not succeed when attempting to force an edge correction on it.

Usage

```
ripleys_k(
  mif,
  mnames,
  r_range = seq(0, 100, 1),
  num_permutations = 50,
  edge_correction = "translation",
  method = "K",
  permute = FALSE,
  keep_permutation_distribution = FALSE,
  workers = 1,
  overwrite = FALSE,
  xloc = NULL,
  yloc = NULL,
  big = 10000
```

Arguments

permute

mif object of class 'mif' created with 'create_mif'

mnames cell phenotype markers to calculate Ripley's K for

r_range radius range (including 0)

num_permutations

number of permutations to use to estimate CSR. If 'keep_perm_dis' is set to FALSE, this will be ignored

edge_correction

edge correction method to pass to 'Kest'. can take one of "translation", "isotropic", "none", or 'border'

method not used currently

whether to use CSR estimate or use permutations to determine CSR

22 subset_mif

keep_permutation_distribution

whether to find mean of permutation distribution or each permutation calculation

workers number of cores to use for calculations

overwrite whether to overwrite the 'univariate_Count' slot within 'mif\$derived'

xloc the location of the center of cells. If left 'NULL', 'XMin', 'XMax', 'YMin',

and 'YMax' must be present.

yloc the location of the center of cells. If left 'NULL', 'XMin', 'XMax', 'YMin',

and 'YMax' must be present.

big the number of cells at which to flip from an edge correction method other than

'none' to 'none' due to size

Value

object of class 'mif'

Examples

```
x <- spatialTIME::create_mif(clinical_data =spatialTIME::example_clinical %>%
 dplyr::mutate(deidentified_id = as.character(deidentified_id)),
 sample_data = spatialTIME::example_summary %>%
 dplyr::mutate(deidentified_id = as.character(deidentified_id)),
 spatial_list = spatialTIME::example_spatial,
 patient_id = "deidentified_id",
 sample_id = "deidentified_sample")
mnames = x$spatial[[1]] %>%
 colnames() %>%
 grep("Pos|CD", ., value =TRUE) %>%
 grep("Cyto|Nucle", ., value =TRUE, invert =TRUE)
x2 = ripleys_k(mif = x,
 mnames = mnames[1],
 r_range = seq(0, 100, 1),
 num_permutations = 100,
 edge_correction = "translation",
 method = "K",
 permute = FALSE,
 keep_permutation_distribution =FALSE,
 workers = 1,
 overwrite =TRUE)
```

subset_mif

Subset mif object on cellular level

Description

This function allows to subset the mif object into compartments. For instance a mif object includes all cells and the desired analysis is based on only the tumor or stroma compartment then this function will subset the spatial list to just the cells in the desired compartment

subset_mif 23

Usage

```
subset_mif(mif, classifier, level, markers)
```

Arguments

mif An MIF object

classifier Column name for spatial dataframe to subset
level Determines which level of the classifier to keep.

markers vector of

Value

mif object where the spatial list only as the cell that are the specified level.

Examples

```
#' #Create mif object
library(dplyr)
x <- create_mif(clinical_data = example_clinical %>%
mutate(deidentified_id = as.character(deidentified_id)),
sample_data = example_summary %>%
mutate(deidentified_id = as.character(deidentified_id)),
spatial_list = example_spatial,
patient_id = "deidentified_id",
sample_id = "deidentified_sample")

markers = c("CD3..Opal.570..Positive", "CD8..Opal.520..Positive",
"FOXP3..Opal.620..Positive", "PDL1..Opal.540..Positive",
"PD1..Opal.650..Positive", "CD3..CD8.", "CD3..FOXP3.")

mif_tumor = subset_mif(mif = x, classifier = 'Classifier.Label',
level = 'Tumor', markers = markers)
```

Index

```
* datasets
    example_clinical, 13
    example_spatial, 14
    example\_summary, 14
bi_NN_G, 2
bi_pair_correlation, 4
bi_ripleys_k, 5
bi_ripleys_k_WSI,6
compute\_metrics, 8
\texttt{create\_mif}, \textcolor{red}{10}
{\tt dixons\_s}, 11
\verb|example_clinical|, 13|
example_spatial, 14
example_summary, 14
interaction_variable, 15
merge\_mifs, 16
NN_G, 17
pair_correlation, 18
plot_immunoflo, 19
ripleys_k, 20
subset_mif, 22
```