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Abstract

We describe the R package sstvars, which provides tools for estimating and analyz-
ing the reduced form and structural smooth transition vector autoregressive (STVAR)
models. The package implements various transition weight functions, conditional distri-
butions, identiĄcation methods, and parameter restrictions. The model parameters are
estimated with the method of maximum likelihood by running multiple rounds of a two-
phase estimation procedure in which a genetic algorithm is used to Ąnd starting values for
a gradient based method. For evaluating the adequacy of the estimated models, sstvars

utilizes residuals based diagnostics and provides functions for graphical diagnostics and
for calculating formal diagnostic tests. sstvars also accommodates the estimation of linear
impulse response functions, nonlinear generalized impulse response functions, and gener-
alized forecast error variance decompositions. Further functionality includes hypothesis
testing, plotting the proĄle log-likelihood functions about the estimate, simulation from
STVAR processes, and forecasting, for example. We illustrate the use of sstvars with a
quarterly series consisting of two U.S. variables: the percentage change of real GDP and
the percentage change of GDP implicit price deĆator.

Keywords: smooth transition vector autoregressive model, structural smooth transition vector
autoregressive model, regime-switching, SVAR, STVAR, maximum likelihood estimation.

1. Introduction

Linear vector autoregressive (VAR) models are a standard tools in time series econometrics.
They can be employed to answer questions about the statistical relationships of different
variables or to forecast future values of the process, for example. Structural VAR models,
in particular, allow to trace out the effects of economic shocks. With an appropriate choice
of the autoregressive order p, a linear VAR model is often able to Ąlter out autocorrelation
from the series very well. If the errors are assumed to follow an autoregressive conditional
heteroskedasticity (ARCH) process, the model is also often able to adequately Ąlter out
conditional heteroskedasticity from the series.

In some cases, linear VAR models are not, however, capable of capturing all the relevant
characteristics of the data. This includes shifts in the mean or volatility, and changes in
the autoregressive dynamics of the process. Such nonlinear features frequently occur in eco-
nomic time series when the underlying data generating dynamics vary in time, for example,
depending the speciĄc state of the economy.

Various types of time series models capable of capturing this kind of regime-switching behav-
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ior have been proposed, one of them is the smooth transition vector autoregressive (STVAR)
models that allow to capture gradual shifts in the dynamics of the data. They consist of a
Ąnite number of regimes, each of which are linear vector autoregressions that are character-
ized by different autoregressive coefficients or error term covariance matrices. The package
sstvars considers STVAR models in which, at each point of time, the observation is a weighted
average of the conditional means of the regimes plus a random error whose covariance matrix
is a weighted average of the covariance matrices of the regimes. The weights, in turn, are
expressed in terms of time-varying transition weights that depend on the preceding observa-
tions. Different STVAR models can be created by specifying the transition weights or the
error distribution in various ways.

This manuscript describes the R package sstvars providing a set of easy-to-use tools for
STVAR modeling, including unconstrained and constrained maximum likelihood (ML) esti-
mation of the model parameters, residual based model diagnostics, estimation of linear im-
pulse response functions, nonlinear generalized impulse response functions, and generalized
forecast error variance decompositions. Further functionality includes hypothesis testing, plot-
ting the proĄle log-likelihood functions about the estimate, simulation from STVAR processes,
and forecasting, for example. Various transition weight functions are accommodated, includ-
ing exogenous weights, logistic weights (Anderson and Vahid 1998), multinomial logit weights,
exponential weights (e.g., Hubrich and Teräsvirta 2013), threshold weights (Tsay 1998), and
transition weights that deĄned as weighted relative likelihoods of the regimes corresponding
to the preceding p observations (Lanne and Virolainen 2024). Currently, the accommodated
conditional distributions include Gaussian distribution, StudentŠs t distribution, and Stu-
dentŠs t distribution with independent components, whereas the accommodated identiĄcation
methods include recursive identiĄcation, identiĄcation by heteroskedasticity (Lütkepohl and
Netšunajev 2017), and identiĄcation by non-Gaussianity (Virolainen 2024a).

The estimation of the model parameters can, in some cases, be rather tricky. Particularly
when the transition weights are determined endogenously, there is a very large number of
modes to the log-likelihood function, and large areas of the parameter space, where the
log-likelihood function is Ćat in multiple directions. Therefore, the model parameters are
estimated by running multiple rounds of a two-phase estimation procedure in which a modiĄed
genetic algorithm is used to Ąnd starting values for a gradient based variable metric algorithm.
Because of the multimodality of the log-likelihood function, some of the estimation rounds
may end up in different local maximum points, thereby enabling the researcher to build models
not only based on the global maximum point but also on the local ones. The estimated models
can be conveniently examined with the summary and plot methods.

The remainder of this paper is organized as follows. Section 2 deĄnes the implemented STVAR
models and discusses some of their properties. IdentiĄcation of the structural shocks is also
discussed. Section 4 discusses estimation of the model parameters. We also illustrate how
the STVAR models can be estimated and examined with sstvars and how various parameter
restrictions can be imposed in the estimation. Section 5 discusses how to evaluate the model
adequacy with sstvars using residual based diagnostics. Section 6 discusses impulse response
analysis, including generalized impulse response functions and generalized forecast error vari-
ance decompositions. Section 7 shows how the STVAR models can be constructed with given
parameter values. In Section 8, we Ąrst show how to simulate observations from a STVAR
process, and then we illustrate how to forecast future values of a STVAR process with a
simulation-based Monte Carlo method. Finally, Section 9 concludes and collects some useful
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functions in sstvars to a single table for convenience. Throughout this paper, we illustrate the
use of sstvars with a quarterly series consisting of two U.S. variables: the percentage change
of real GDP and the percentage change of GDP implicit price deĆator, covering the period
from 1959Q1 to 2019Q4.

2. Smooth Transition Vector Autoregressive Models

This section describes the STVAR models implemented in sstvars. First, we describe the gen-
eral framework of STVAR models accommodated by sstvars and present a sufficient condition
for their ergodic stationarity. Then, we present the implemented speciĄcations of transition
weight functions and conditional distributions. Finally, we discuss structural STVAR models
and implemented methods for identiĄcation of the shocks.

2.1. General framework for STVAR models

Let yt, t = 1, 2, ..., be the d-dimensional time series of interest and Ft−1 denote the σ-algebra
generated by the random vectors ¶yt−j , j > 0♢. We consider STVAR models with M regimes
and autoregressive order p assumed to satisfy

yt =
M
∑

m=1

αm,tµm,t + ut, ut ∼ MD(0, Id) (1)

µm,t = ϕm,0 +
p
∑

i=1

Am,iyt−i, m = 1, ..., M, (2)

BtB
′
t =

M
∑

m=1

αm,tΩm, (3)

where ϕm,0 ∈ R
d are intercept parameters, Am,i is the lag i autoregression matrix of Regime

m, and ut is a martingale difference sequence of reduced form innovations. The transition
weights αm,t are assumed to be Ft−1-measurable functions of ¶yt−j , j = 1, ..., p♢ and to satisfy
∑M

m=1 αm,t = 1 at all t. They express the proportions of the regimes the process is on at each
point of time, and how the process shifts between the regimes. Through, a STVAR model
with autoregressive order p and M regimes is referred to as a STVAR(p, M) model, whenever
the order of the model needs to be emphasized.

Conditional on Ft−1, the conditional mean of the above described process is µy,t ≡ E[yt♣Ft−1] =
∑M

m=1 αm,tµm,t. The conditional mean is thereby a weighted sum the regime-speciĄc means
µm,t with the weights given by the transition weights αm,t The speciĄcation of the condi-
tional covariance matrix Ωy,t ≡ Cov(yt♣Ft−1) = Cov(ut♣Ft−1) depends on the error term
distribution. The it assumed to be either Gaussian or t-distributed (in the conventional way),
the conditional covariance matrix is assumed to be the weighted average of the covariance
matrices of the regimes:

Ωy,t =
M
∑

m=1

αm,tΩm, (4)

where Ω1, ..., ΩM are the positive deĄnite (d × d) covariance matrices of the regimes. If the
error term distribution is StudentŠs t distribution with mutually independent components
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(hereafter independent t-distribution), the conditional covariance matrix is different, because
the model is directly parametrized with the invertible (d × d) impact matrices Bm of the
regimes. In this case, the conditional covariance is matrix is:

Ωy,t =



M
∑

m=1

α
1/2
m,tBm



M
∑

m=1

α
1/2
m,tBm

′

=
M
∑

m=1

αm,tΩm +
M
∑

m=1

M
∑

n=1,n̸=m

α
1/2
m,tα

1/2
n,t Ωm,n, (5)

where Ωm ≡ BmB′
m and Ωm,n ≡ BmB′

n.

Different STVAR models are obtained by specifying the transition weights or the error distri-
bution (i.e., the conditional distribution) in various ways. See Hubrich and Teräsvirta (2013)
for a survey on STVAR literature, including formulations more general than our framework.
The package sstvars accommodates completely exogenous transition weight functions as well
as transition weights are functions of ¶yt−j , j = 1, ..., p♢. In the latter case, the stationarity
condition presented below applies. Moreover, Ft−1-measurability of the transition weights
ensures that the true generalized impulse responses functions (Koop, Pesaran, and Potter
1996) can be easily estimated, as completely exogenous switching-variables are excluded from
affecting the weights. We also assume that the transition weights are identical for all the
individual equations in (1) and (3), which is also required for applicability of the stationarity
condition. Consequently, at each t‚ the process can be described as a weighted sum of linear
vector autoregressions.

Stationarity condition

Excluding models with exogenous transition weights, it can be shown that a sufficient condi-
tion for the ergodic stationarity of the STVAR model (1)-(3) can expressed in terms of the
joint spectral radius (JSR) of certain matrices (Kheifets and Saikkonen 2020). The JSR of a
Ąnite set of square matrices A is deĄned by

ρ(A) = lim sup
j→∞



sup
A∈Aj

ρ(A)

1/j

, (6)

where Aj = ¶A1A2...Aj : Ai ∈ A♢ and ρ(A) is the spectral radius of the square matrix A.

Consider the companion form AR matrices of the regimes deĄned as

Am =

















Am,1 Am,2 · · · Am,p−1 Am,p

Id 0 · · · 0 0
0 Id 0 0
...

. . .
...

...
0 0 . . . Id 0

















(dp×dp)

, m = 1, ..., M. (7)

Kheifets and Saikkonen (2020, Theorem 1) and Lanne and Virolainen (2024) (see also Saikko-
nen 2008) show that if the following condition holds, the STVAR process is ergodic stationary
(both strictly and second-order).

Condition 1 ρ(¶A1, ...,AM ♢) < 1.
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Condition 1 is, however, computationally demanding the check in practice with a reasonable
accuracy (e.g., Chang and Blondel 2013), making it impractical to use in the estimation.
Therefore, we consider a necessary condition for Condition 1 that is easier to check in practice,
which is that the usual stability condition is satisĄed for each of the regimes. SpeciĄcally, the
following condition, which is analogous to Corollary 1 of Kheifets and Saikkonen (2020), is
necessary for Condition 1.

Condition 2 max¶ρ(A1), ..., ρ(AM )♢ < 1,

where ρ(Am) is the spectral radius of Am, m = 1, ..., M .

Note that validity Condition 2 does not imply the validity of Condition 1, which guarantees
ergodic stationarity of the model. However, in practice models that satisfy Condition 2
and are not very close to breaking this condition usually satisfy Condition 1. For checking
the validity of Condition 1, sstvars implements (the function bound_JSR) implements the
branch-and-bound method by Gripenberg (1996). For large models GripenbergŠs method
may, however, take very long if tight bounds are required. Other implementations of methods
bounding the JSR include the MATLAB toolbox JSR by Jungers (2023), which automatically
combines several methods and Ąnds accurate bounds faster than sstvars.

2.2. SpeciĄcations of the conditional distribution

Currently, sstvars accommodates two types of error distributions: Gaussian distribution,
StudentŠs t, and independent StudentŠs t distribution, which are discussed below.

Gaussian distribution

Assuming the structural errors et have standard normal distributions, the conditional distri-
bution of yt conditional on Ft−1 is Gaussian and characterized by the density function

f(yt♣Ft−1) = nd(yt; µt, Ωt) = (2π)−d/2 det(Ωt)
−1/2 exp



−
1

2
(yt − µt)

′Ω−1
t (yt − µt)



. (8)

That is, the conditional distribution is simply the d-dimensional Gaussian distribution with
mean µt and covariance matrix Ωt. The Gaussian distribution simple and can be used with
all of our transition weight functions, but in some cases it is useful to employ the more heavy
tailed StudentŠs t distribution instead.

Student’s t distribution

To accommodate more heavy tailed data, instead of using Gaussian errors one may consider
StudentŠs t errors and assume the shocks et are StudentŠs t distributed with the mean zero,
identity covariance matrix, and ν > 2 degrees of freedom (where the assumption ν > 2 is
made to ensure the existence of second moments). The StudentŠs t STVAR model has the
conditional distribution, conditional Ft−1, characterized by the density function

f(yt♣Ft−1) = td(yt; µt, Ωt, ν) = Cd(ν)det(Ωt)
−1/2



1 +
(yt − µt)

′Ω−1
t (yt − µt)

ν − 2

−(d+ν)/2

, (9)

where

Cd(ν) =
Γ


d+ν
2

)

√

πd(ν − 2)dΓ
(

ν
2

)

, (10)
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and Γ (·) is the gamma function. The conditional distribution is, hence, the d-dimensional
StudentŠs t distribution with mean µt, covariance matrix Ωt, and ν degrees of freedom. Note
that the parametrization differs from the conventional one, as the distribution is parametrized
with a covariance matrix instead a scale matrix (see, e.g., Meitz, Preve, and Saikkonen 2023,
Appendix A for details about the parametrization).

The StudentŠs t errors are more Ćexible than the Gaussian ones, but they cannot be used with
the transition weight function that is deĄned as weighted ratios of the regimeŠs stationary
densities (see Section 2.3.1). This is because it requires the knowledge of the stationary
distributions of the regimes corresponding to p consecutive observations, and the stationary
distribution is not known for the StudentŠs t regimes. Moreover, StudentŠs t STVAR models
are more difficult estimate in practice than the Gaussian ones, and estimation of the STVAR
models can be demanding.

Independent Student’s t distribution

In addition to the conventional multivariate StudentŠs t distribution, sstvars accommodates
StudentŠs t distribution with mutually independent components, i.e., each component of the
error term follows a univariate StudentŠs t distribution independently from the the other
components. The independent StudentŠs t STVAR model has the conditional distribution,
conditional Ft−1, characterized by the density function

f(yt♣Ft−1) = ♣ det(Bt)♣
−1

d
∏

i=1

t1(ι′
iB

−1
t (yt − µt); 0, 1, νi) = (11)

where ιi = (0, ...0, 1, 0, .., 0) is a (d × 1) has one in the ith entry and zeros in the other entries,
t1(·; 0, 1, νi) is the density function of univariate t-distribution with mean zero, variance one,
and νi degrees of freedom (obtained from the d-dimensional density described in Section 2.2.2),
and

By,t =
M
∑

m=1

α
1/2
m,tBm, (12)

where B1, ..., BM are invertible (d × d) impact matrices of the regimes.

The independent StudentŠs t distribution is more Ćexible than the conventional t-distribution,
as it allows for different degrees of freedom parameter values for each component. However,
the for structural analysis, a more substantial advantage is that under mutually independent
StudentŠs t shocks, the structural shocks are statistically identiĄed without further restrictions
on the model (Virolainen 2024a). But this comes at a cost: due to the structure of the
conditional distribution, evaluation of the log-likelihood function is computationally more
costly than with the conventional t-distribution. Therefore, maximum likelihood estimation
of STVAR with independent StudentŠs t shocks is somewhat slower.

2.3. SpeciĄcations of the transition weights

Various speciĄcations of the transition weights αm,t can be considered to obtain smooth
transition VARs with different properties. We assume that the transition weights are either
completely exogenous or functions of ¶yt−j , j = 1, ..., p♢. Under the latter type of weights,
the stationarity condition discussed in Section 2.1.1 applies. Moreover, Ft−1-measurability
of the transition weights ensures that the true generalized impulse responses functions can
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be easily estimated, as completely exogenous switching-variables are excluded from affecting
the weights.1 We also assume that the transition weights are identical for all the individual
equations in (1) and (3), which is required for applicability of the stationarity condition.
Consequently, at each t‚ the process can be described as a weighted sum of linear VARs.

Weighted relative likelihoods

If the conditional distribution is speciĄed to be Gaussian, weighted relative likelihoods of the
regimes can be used as transition weights (Lanne and Virolainen 2024). In this speciĄcation,
the transitions weights depend on the full distribution of the preceding p observations, they are
deĄned identically to the mixing weights in the Gaussian mixture vector autoregressive (GM-
VAR) model of Kalliovirta, Meitz, and Saikkonen (2016). Denoting yt−1 = (yt−1, ..., yt−p),
the transition weights are deĄned as

αm,t =
αmndp(yt−1; 1p ⊗ µm, Σm,p)

∑M
n=1 αnndp(yt−1; 1p ⊗ µn, Σn,p)

, m = 1, ..., M, (13)

where α1, ..., αM are transition weight parameters that satisfy
∑M

m=1 αm = 1 and ndp(·; 1p ⊗
µm, Σm,p) is the density function of the dp-dimensional Gaussian distribution with mean
1p ⊗ µm and covariance matrix Σm,p. The symbol 1p denotes a p-dimensional vector of ones,
⊗ is Kronecker product, µm = (Id −

∑p
i=1 Am,i)

−1ϕm,0, and the covariance matrix Σm,p is
given in Lütkepohl (2005, Equation (2.1.39)), but using the parameters of the mth regime.
That is, ndp(·; 1p⊗µm, Σm,p) corresponds to the density function of the stationary distribution
of the mth regime.

The transition weights are thus weighted ratios of the stationary densities of the regimes
corresponding to the preceding p observations. This speciĄcation is appealing, as it states
that the greater the weighted relative likelihood of a regime is, the greater the weight of this
regime is. The regimes are, hence, formed based on the statistical properties of the data and
are not affected by the choice of the switching variables similarly to the logistic weights.

In the GMVAR model (Kalliovirta et al. 2016), the deĄnition of the mixing weights also leads
to attractive theoretical properties such as the the knowledge of the stationary distribution
of p + 1 consecutive observations. But this is not the case in our STVAR model, as the
structure of the model is different. The GMVAR model has been implemented to the R
package gmvarkit (Virolainen 2018a), which works quite similarly to sstvars.

Logistic transition weights

A common speciĄcation assumes logistic transition weights (e.g., Anderson and Vahid 1998)
that vary according to the level of the switching variable, which we assume to be a lagged
endogenous variable. Here we assume that the model has only two regimes (M = 2), and
in the next section, we show how the logistic weights generalize to multinomial logit weights
that accommodate more regimes.

The logistic transition weights are deĄned as

α1,t = 1 − α2,t, (14)

α2,t = [1 + exp¶−γ(yit−j − c)♢]−1, (15)

1Weaker forms of exogeneity of specific variables can also be imposed by constraining the AR matrices
Am,i, m = 1, ..., M , i = 1, ..., p, or the impact matrix Bt accordingly (see Section 4.6).
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where yit−j is the jth lagged observation (j ∈ ¶1, ..., p♢) of the ith variable (i ∈ ¶1, ..., d♢), c ∈
R is a location parameter, and γ > 0 is a scale parameter. The location parameter c determines
the mid point of the transition function, i.e., the value of the (lagged) switching variable
when the weights are equal. The scale parameter γ, in turn, determines the smoothness of
the transitions (smaller γ implies smoother transitions), and it is assumed strictly positive so
that α2,t is increasing in yit−j .

Compared to weighted relative likelihoods, an advantage of the logistic weights is that it
allows to specify switching variables in a way that leads to the regimes the econometrician is
interested in in a speciĄc application. For instance, if one is interested in how the effects of
the shocks vary along with business cycle Ćuctuations, yit−j may be set as a lagged output gap
variable. STVAR models with logistics weights are also easier to estimate than those with the
transition weights determined by weighted relative likelihoods of the regimes. A disadvantage
is that the empirical results depend highly on the choice of the switching variable, and only
the level of the switching variable affects the transition weights.

Multinomial logit transition weights

The logistic transition weights can be generalized to multinomial logit weights that accom-
modate more than two regimes as well as multiple lags of multiple switching variables as
regressors in the logit sub model. The generality, however, comes at the cost of signiĄcantly
more difficult estimation in the practice and loss of the intuitive interpretations of the pa-
rameters of the transition function. With M ≥ 2 regimes, we specify the multinomial logit
weights as

αm,t =
exp¶γ′

mzt−1♢
∑M

n=1 exp¶γ′
nzt−1♢

, m = 1, ..., M, (16)

where zt−1 is an (k × 1) Ft−1-measurable vector containing the (lagged) switching variables
and a constant term, γm, m = 1, ..., M − 1, are (k × 1) coefficient vectors, and the last one
is normalized as γM = 0 (k × 1) to facilitate identiĄcation.2 Denote the set of switching
variables as I ⊂ ¶1, ..., d♢ (with the indices in I corresponding to the ordering of the variables
in yt) and assume that p̃ ∈ ¶1, ..., p♢ lags are included in the transition weights. We assume

zt−1 = (1, z̃min¶I♢, ..., z̃max¶I♢), z̃j = (yit−1, ..., yit−p̃), i ∈ I. (17)

So k = 1 + ♣I♣p̃ where ♣I♣ is the cardinality of the set I (i.e., the number of elements in I).
For instance, if the switching variables are the Ąrst two variables in yt, I = ¶1, 2♢ and only
the Ąrst lag is included, p̃ = 1, we have zt−1 = (1, y1t−1, y2t−1).

The speciĄcation implies

log
αm,t

αM,t
= γ′

mzt−1, m = 1, ..., M − 1. (18)

Our speciĄcation assumes that all the lags up to the lag p̃ are included in the transition
weights. The inclusion of only some speciĄc lags in the transition weights is, however, ac-
commodated by imposing constraints on the parameters α ≡ (γ1, ..., γM−1) ((M − 1)k × 1).
SpeciĄcally, sstvars assumes constraints of the form

α = Rξ + r, (19)

2Burgard, Neuenkirch, and Nöckel (2019) specify the mixing weights of their mixture VAR in a similar
fashion, but unlike us, they allow for exogenous switching variables.
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where R is a known ((M − 1)k × l) constraint matrix, r is a known ((M − 1)k × 1) constant,
and ξ is an unknown (l ×1) parameter. For instance, by assuming that R is a matrix of zeros,
the weight parameter α can be constrained to a known constant.

The logistic weights discussed in the previous section, with yit−j as the switching variable for
some lag j ∈ ¶1, ..., p♢ and i ∈ ¶1, ..., d♢, are obtained as a special case as follows. Assume
M = 2, p̃ = j, and I = ¶i♢, so that zt−1 = (1, yit−1, ..., yit−j). Then, impose the constraints
r = 0 and

R =













1 0
0 0
...

...
0 1













(j + 1 × 2), (20)

so ξ = (γ1,1, γj+1,1), where γl,m is the lth element of γm.

A direct calculation shows that the "scale parameter" is −γj+1,1) and the "location parameter"
is

γ1,1

−γj+1,1
. The linear constraints (19) do not, however, enable to constrain the location pa-

rameter
γ1,1

−γj+1,1)
to a speciĄc value while leaving the scale parameter −γ(j+1),1) unconstrained

(or vice versa), or to constrain the scale parameter strictly positive. Therefore, it is more
convenient to use the logistic weights and parametrization discussed in Section 2.3.2 when
only two regimes and one lag of one switching variable are used.

Exponential transition weights

Exponential transition weights (see, e.g., Teräsvirta 1994) vary according to the level of the
switching variable, which we assume to be a lagged endogenous variable. Similarly to the
logistic transition weights discussed in Section 2.3.2, the exponential weights depend on a
location parameter c and a scale parameter γ that determine the mid point of the transi-
tion curve and smoothness of the transitions, respectively. But instead of logistic transition
function, we consider an exponential transition function.

SpeciĄcally, we assume M = 2 and deĄne the exponential transition weights as

α1,t = 1 − α2,t, (21)

α2,t = 1 − exp¶−γ(yit−j − c)2♢ (22)

where yit−j is the jth lagged observation (j ∈ ¶1, ..., p♢) of the ith variable (i ∈ ¶1, ..., d♢),
c ∈ R is a location parameter, and γ > 0 is a scale parameter. The location parameter c

determines the value of the (lagged) switching variable when the process is completely in Ąrst
regime, i.e., α1,t = 1 and α2,t = 0. The closer yit−j is to c, the greater the weight of the Ąrst
regime is. Conversely, when the deviation of yit−j from c increases, the weight of the second
regime increases (and the weight of the Ąrst regime decreases). The scale parameter γ, in
turn, determines the smoothness of the transitions (smaller γ implies smoother transitions),
and it is assumed strictly positive so that α2,t ∈ [0, 1] for all yit−j .

Threshold transition weights

Threshold transition weights assume discrete regime switches such that the regime switches
when the level of the switching variable exceeds or falls below a threshold value. This type
model nonlinear VARs are often referred to as Threshold VAR (TVAR) models (Tsay 1998)
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or self-exciting TVAR models (due to the endogenous switching-variable). We interpret the
TVAR model as a special case of the STVAR models, despite of the regime switches being
discrete rather than smooth.

For a model with M > 1 regimes, consider the M − 1 threshold values r1, ., .., rM−1 ∈ R

such that r1 < · · · < rM−1, and suppose the switching variable is i ∈ ¶1, ..., d♢ with the lag
j ∈ ¶1, ..., p♢. The transition function is deĄned as

αm,t =

{

1 if rm−1 < yit−j ≤ rm,

0 otherwise,
(23)

where r0 ≡ −∞, rM ≡ ∞, and m = 1, ..., M . In other words, at each t‚ the model deĄned in
Equations (1)-(3) and (23) reduces to a linear VAR corresponding to one of the regimes that
is determined according to the level of the switching variable yit−j .

Compared to smoothly varying transition weights, threshold transition weights have the ad-
vantage that the resulting model is easier to estimate in practice and the regimes have clearer
interpretations. An obvious disadvantage is the inability to capture gradual shifts between
the regimes or more complex regime-switching dynamics that depend on other factors than
just on the level of the switching variable.

Exogenous transition weights

In addition to the endogenous transition weights described above, sstvars accommodates
completely exogenous transition weights. These weights are speciĄed by the user by supplying
them as a matrix. The only restrictions are that they must sum to one for each time period t

and they must be weakly larger than zero. If exogenous weights are provided, the stationarity
condition does not apply, but sstvars still assumes that each of the regimes satisĄes the usual
stability condition. Moreover, computation of the generalized impulse response functions
requires that the exogenous transition weights that should be used for the sample paths are
provided by the user. Linear impulse response functions based on a speciĄc regime can,
nonetheless, be calculated.

3. Structural STVAR models

Constructing a structural STVAR model from a reduced form STVAR model amounts to
identifying the mutually and serially uncorrelated structural shocks et = (et1, .., etd). The
structural shocks are recovered from the reduced form innovations ut based on the identity
et = B−1

t ut, where Bt is a time-varying invertible (d × d) impact matrix that governs the
contemporaneous relationships of the shocks. Since many different solutions to the impact
matrix generally lead to observationally equivalent models, further assumptions are required
for unique identiĄcation of the structural shocks.

The R package sstvars currently accommodates three types of identiĄcation methods: recur-
sive identiĄcation, identiĄcation by heteroskedasticity, and identiĄcation by non-Gaussianity.
IdentiĄcation by non-Gaussianity requires mutually independent shocks at most one of which
can be Gaussian (Virolainen 2024a), and therefore, it is available only for model with inde-
pendent StudentŠs t errors distribution. In that case, the shocks are statistically identiĄed
without further assumptions, and thus we have excluded the availability of the other two iden-
tiĄcation methods to these models. Overidentifying restrictions on the impact responses of the
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variables to the shocks can, however, be imposed. Structural models incorporating Gaussian
or conventional t shocks can be identiĄed in sstvars recursively or by heteroskedasticity.

3.1. Recursive identiĄcation

A conventional way of identifying the shocks is to impose restrictions on the impact responses
of variables. A commonly applied identiĄcation is to assume a recursive lower-triangular
structure on Bt, implying that Bt is obtained as the Cholesky decomposition of the conditional
covariance matrix Ωy,t. The recursive identiĄcation is straightforward to apply and it allows
many of the impact responses to vary in time but constraints many of them to zero. This
is particularly disadvantageous if the shock of interest is ordered last or almost last (which
is typically the case in small-scale monetary policy shock applications), as then the impact
responses of many of the variables to the shock of interest are zero, and therefore, time-
invariant.

With our speciĄcation of the STVAR model, recursive identiĄcation does not, however, allow
to impose over-identifying restrictions on the impact matrix Bt. This is because there does
not exist a direct parametrization of a lower-triangular Bt such that the conditional covariance
matrix Ωy,t is a weighted sum of the regime-speciĄc covariance matrices with time-varying
weights.

3.2. IdentiĄcation via heteroskedasticity

An alternative identiĄcation method proposed by Lütkepohl and Netšunajev (2017) for struc-
tural VARs with smooth transitions in variances (see also the seminal paper by Rigobon 2003)
identiĄes the shocks by simultaneously diagonalizing the covariance matrices Ω1, ..., ΩM . This
restricts the relative impact responses of the variables to be constant over time (for each shock)
but does not necessarily require any zero restrictions. Since Lütkepohl and Netšunajev (2017)
assume only two regimes and do not normalize the conditional covariance matrix of the struc-
tural error to a constant, their speciĄcation does not directly apply to our model. Therefore,
we adopt the more suitable speciĄcation of Virolainen (2024b), and decompose the covariance
matrices as

Ωm = WΛmW ′, m = 1, ..., M, (24)

where the diagonal of Λm = diag(λm1, ..., λmd), λmi > 0 (i = 1, ..., d), contains the eigenvalues
of the matrix ΩmΩ−1

1 and the columns of the nonsingular W are the related eigenvectors (that
are the same for all m by construction). When M = 2, the decomposition (24) always exists
(Muirhead 1982, Theorem A9.9), but for M > 2 its existence requires that the matrices
ΩmΩ−1

1 share the common eigenvectors in W . This is, however, testable.

The impact matrix is then obtained as

Bt = W



M
∑

m=1

αm,tΛm

1/2

, (25)

where Λ1 = Id. The shocks are identiĄed up to ordering and sign if none of the pairs of λmi,
i = 1, ..., d, is identical for all m = 2, ..., M . Assuming that his condition is satisĄed, the shocks
can be labelled according to the unrestricted impact responses on Bt, and if necessary, further
economically motivated restrictions can be imposed. The additional economic restrictions on
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the impact matrix are testable, as they are overidentifying. See Virolainen (2024b) for a more
detailed discussion on the identiĄcation and labelling of the shocks.

Shocks identiĄed by heteroskedasticity impose constant relative impact responses for the
variables, making them unsuitable for some applications concerned with time-varying impulse
response functions. Similarly to the recursive identiĄcation, this method is straightforward
to apply, but unlike the recursive identiĄcation, it does not necessarily require any zero
constraints on the impact responses. Compared to the recursive identiĄcation, identiĄcation
by heteroskedasticity is therefore particularly advantageous when the recursive identiĄcation
would imply that the shock of interest is order last. In this case, the assumption of time-
invariant relative impact responses is less restrictive than the zero restrictions of the recursive
identiĄcation. In contrast, the recursive identiĄcation is particularly appealing when the
shock of interest is ordered Ąrst (or almost Ąrst), as then the impact responses to the shock
of interest can vary freely in time.

3.3. IdentiĄcation by non-Gaussianity

When to shocks are mutually independent and at most one of them is Gaussian (i.e., under
independent t-shocks, see Section 2.2.3), they are generally statistically identiĄed without
imposing further restrictions on the models (Virolainen 2024a). SpeciĄcally, the required
identifying assumptions are:

Assumption 1 1. The structural error process et = (e1t, ..., edt) is a sequence of indepen-
dent and identically distributed random vectors such that et is independent of Ft−1 and
with each component eit, i = 1, ..., d, having zero mean and unit variance.

2. The components of et = (e1t, ..., edt) are (mutually) independent and at most one them
has a Gaussian marginal distribution.

The Ąrst two assumptions state the requirements of the structural shocks. The latter two
assumptions state that either the transition weights of the regimes take the value one or
they exhibit certain small degree of variation. These are not restrictive however, since gener-
ally when the regime-switches are not discrete, there is sufficient amount of variation in the
transition weights.

Under Assumption 1 the impact matrix 12 is uniquely identiĄed at each t up to ordering and
signs of its columns (Virolainen 2024a, Lemma 2). If the impact matrix is time-invariant as
in Lanne, Meitz, and Saikkonen (2017), i.e., By,t = B for some constant matrix B, it follows
that the structural shocks are identiĄed up to ordering and sign. Such statistically identiĄed
shocks can then be labelled by economic shocks based on external information However, when
the impact matrix varies in time, two complications arise. First, the impact matrix By,t is
not a matrix of constant parameters, but a function of parameters, and it needs to be shown
that the parameters in the speciĄc functional form of By,t are identiĄed. Second, since the
identiĄcation of By,t at each t is only up to ordering and signs of its columns, its unique
identiĄcation requires that the parameters in the functional form of By,t are restricted so that
it Ąxes the ordering and signs of By,t.

Considering the functional form of By,t in Equation (12), in order to Ąx the ordering and
signs of the columns of By,t it then suffices to Ąx the ordering and signs of the columns of
B1, ..., BM . This requires such constraints to be imposed on B1, ..., BM that under these



Savi Virolainen 13

constraints, reordering or changing the signs of the columns of any of Bm would lead to an
impact matrix By,t that is not observationally equivalent to the original one at some t. In
other words, under the constraints, changing the ordering or signs of the columns of any of
Bm should lead an impact matrix By,t that, at some t, cannot be obtained by reordering or
changing the signs of the columns of the original one.

A suitable strategy for Ąxing the ordering and signs of the columns of B1, ..., BM depends on
the transition weights and distributions of the shocks, as for some speciĄcations constraints
that are not restrictive in some speciĄcations can be overidentifying in others. Conversely,
constraints that are identifying in some speciĄcations may not be enough for identiĄcation in
others. Therefore, it is useful to divide the discussion on the identiĄcation in two separate
cases: when the transition weights are binary (i.e., αm,t ∈ ¶0, 1♢) and when the transition
weights exhibit more variation.

Identification of the shocks in TVAR models

Suppose the transition weights are binary, αm,t ∈ ¶0, 1♢, for all t and m = 1, ..., M . Then, at
every t, the process is completely in one of the regimes and the impact matrix is By,t = Bm

for the regime m with αm,t = 1. By Lemma 2 of Virolainen (2024a), the impact matrix By,t

is thereby identiĄed up to ordering and signs of its columns in each of the regimes, implying
that identiĄcation is obtained by Ąxing the ordering and signs of the columns of B1, ..., BM .
However, whether Ąxing the ordering or signs of the columns of Bm, m = 1, ..., M ‚ separately
in each regime is overidentifying depends on the distributions of the shocks et = (e1t, ..., edt)
(Virolainen 2024a, see the discussion in)

The required identiĄcation conditions depend on the distributions of the shocks, so it is useful
to make some assumptions on them, which are stated in the following proposition providing
the identiĄcation result for TVAR models (Virolainen 2024a, Proposition 1).

Proposition 1 Consider the STVAR model defined in Equations (1), (2), and (12) with
B1, ..., BM invertible, Assumption 1 satisfied and αm,t ∈ ¶0, 1♢ for all t and m = 1, ..., M .
Denote the density function of the distribution of the shock eit as dei

(·; 0, 1, νi), where νi

denotes the parameters of the distribution other than mean and variance. Suppose the observed
time series is y−p+1, ..., y0, y1, ..., yT and assume the following conditions hold:

1. the signs of the columns of Bm are fixed for each m = 1, ..., M ,

2. the ordering of the columns of B1 is fixed, and

3. eit follow continuous distributions with dei
(x; 0, 1, νi) ̸= dej

(x; 0, 1, νj) almost everywhere
in x ∈ R for i ̸= j = 1, ...., d.

Then, almost everywhere in (y1, ..., yT ) ∈ R
T , the matrices B1, ..., BM are uniquely identified.

To exemplify, independent StudentŠs t distributions satisfy Condition 3 if they have a different
value of the degrees of freedom parameter for each of the shocks, as then the shapes of
the distributions are different so that the densities of the distributions are different almost
everywhere in R. If the degrees of freedom parameter values are close to each other or very
large, Condition 3 is close to breaking because the shapes of the distributions are similar,
resulting in weak identiĄcation with respect to the ordering of the columns of B2, ..., BM .
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Moreover, since the independent StudentŠs t distributions are symmetric about zero, Ąxing
the signs of the columns of B1, ..., BM is not restrictive, as switching the signs would just
switch signs of the corresponding shocks

3.4. IdentiĄcation of the shocks in STVAR models

Having established the identiĄcation result for TVAR models, or more generally to models
incorporating discrete regime switches, we now assume that the transition weights exhibit
more variation. SpeciĄcally, under the conditions of the following proposition (Virolainen
2024a, Proposition 2), the matrices B1, ..., BM are uniquely identiĄed almost everywhere in
[B1 : ... : BM ] ∈ R

d×dM .

Proposition 2 Consider the STVAR model defined in Equations (1), (2), and (12) with
Assumption 1 satisfied. Suppose the following conditions hold:

1. the ordering and signs of the columns of B1 are fixed,

2. the vector (α1,t, ..., αM,t) takes a value for some t such that none of its entries is zero,
and

3. the vector (α1,t, ..., αM,t) and all its subvectors (αn1,t, ..., αnM◦ ,t), nl ∈ M
◦, M

◦ ⊂
¶1, ..., M♢, where M◦ ≥ 2 denotes the number of elements in M

◦, take at least M + 1
linearly independent values.

Then, almost everywhere in [B1 : ... : BM ] ∈ R
d×dM , the matrices B1, ..., BM are uniquely

identified.

The concerns of weak identiĄcation with respect to the ordering of the columns of B2, ..., BM

with binary transition weights also translate to STVAR when the estimates of the transition
weights are such that the weights are mostly close zero or one. Surprisingly, it turns out
that even when there is a high degree of variation in the transition weights, the identiĄcation
with respect to the ordering and signs and of the columns of B2, ..., BM appears to be often
(if not virtually always) very weak in practice. SpeciĄcally, there is frequently a number of
local maximums of the log-likelihood function that yield log-likelihoods very close to each
other and correspond to otherwise mostly very similar parameter estimates, except that the
ordering or signs of the columns of B2, ..., BM differ.

Weak identiĄcation with respect to the ordering and signs of the columns of B2, ..., BM can
be a problem in practice for labelling the shocks. This is because a shock is labelled to one of
the columns of By,t, and different ordering or signs of the columns of B2, ..., BM can thereby
have a substantial effect on the (generalized) impulse response functions. Using a wrong
ordering of the columns of B2, ..., BM would essentially label the shock to a wrong column
of the impact matrix in these regimes, implying that impulse response functions would not
estimate of the effects of the intended shock but of a linear combination of the structural
shocks. Therefore, the next section discusses a procedure proposed by Virolainen (2024a) to
facilitate reliable labelling of the shocks by making use of short-run sign restrictions, which
can also be combined with testable zero restrictions and other types of information.
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Labelling the shocks

Similarly to the identiĄcation by heteroskedasticity, the shocks are statistically identiĄed
without further restrictions or assumptions. Labelling the shocks by the economic shocks
of interest, however, requires external information. The labelling can be done based on the
unrestricted impact responses of the variables, and testable overidentifying restrictions can
also be imposed on the impact responses. It is, however, important to notice that since each
regime has its own impact matrix, the same column of the impact matrix must be associated
to the same shock in all of the regimes. This complicates the labelling, as it the same shock
might induce very different impact responses on different regimes. In this case, imposing
testable overidentifying restrictions on the impact matrix may facilitate the labelling of the
shocks.

Labelling the shocks based on the estimates of the impact matrices B1, ..., BM might not
always be straightforward, because the same shock needs to be associated to the same column
of the impact matrix Bm in all of the regimes. For example, if a positive supply shock should
increase output and decrease prices at impact, labelling the ith shock as the supply shock
requires that the ith column of all B1, ..., BM satisfy such signs of the impact responses of the
variables. If the required signs are not satisĄed by the estimates of B1, ..., BM , the appropriate
overidentifying restrictions can be imposed on B1, ..., BM . In particular, due to the problem
of weak identiĄcation with respect to the ordering and signs of the columns of B2, ..., BM ,
discussed in Virolainen (2024a), the ordering and signs of the columns of B2, ..., BM is often
practically arbitrary even when the ordering and signs are uniquely identiĄed by Proposition 2.
Weak identiĄcation with respect to ordering and signs of the columns B2, ..., BM is not, that
big of an issue, because the researcher can simply choose among the statistically practically
equally Ątting local solutions the one that allows to label the shock of interest to the same
column of each B1, ..., BM .

In the presence of weak identiĄcation with respect to the ordering and signs of the columns,
there are multiple local maximums points of the log-likelihood function such that their log-
likelihoods are very close to each other. The ML estimation method implemented to sstvars

produces a set of local solutions to the estimation problem, the researcher can check whether
there are multiple local solutions that yield log-likelihoods close to each other. Given that
such local solutions are otherwise mostly very similar but incorporating different ordering or
signs of some of the columns of Bm in some regime, the weak identiĄcation is related to the
ordering and signs of the columns. In practice, one can thereby simply choose among the
almost equally well Ątting local solutions the solution that facilitates labelling the shock(s)
of interest to the same column of the impact matrix in all of the regimes. In sstvars different
local solutions are most conveniently examined with the function alt_stvar. Formally, this
procedure can be implemented by imposing economically motivated short-run sign restrictions
on the impact matrices, which can also be supplemented with testable zero restrictions and
other types of information. See Virolainen (2024a) for an illustrative example. Restricted
structural models can be estimated with the function fitSSTVAR.

4. Estimation

The parameters of the reduced form STVAR model are collected to the vector

θ = (ϕ1,0, ..., ϕm,0, φ1, ..., φM , σ, α, ν), (26)
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where φm = (vec(Am,1), ...., vec(Am,p)), m = 1, ..., M , σ contains the covariance matrix pa-
rameters ((vech(Ω1), ..., vech(ΩM )) for Gaussian and Student t models, and (vec(B1), ..., vec(BM ))
for independent StudentŠs t models), α contains the transition weight parameters, ν contains
the degrees of freedom parameter(s) (omitted for Gaussian models), vec is a vectorization op-
erator that stacks the columns of a matrix on top of each other, and vech stacks the columns of
a matrix from the main diagonal downwards (including the main diagonal). Structural mod-
els identiĄed by heteroskedasticity assume σ = (vec(W ), λm, ..., λM ), λm = (λm1, ..., λmd),
m = 2, ..., M , whereas structural models identiĄed recursively or by non-Gaussianity use the
same parameter vector as reduced form models.

If relative stationary densities are used as transition weights, α = (α1, ..., αM−1) (αM is
not included because it is obtained from the constraint

∑M
m=1 αm = 1), where we assume,

for identiĄcation, that α1, ..., αM−1 are in a decreasing order. For exponential and logistic
transition weights, α = (c, γ), for multinomial logit transition weights α = (γ1, ..., γM−1) (γM

is not included because γM = 0 is assumed for identiĄcation), and with threshold transition
weights, α = (r1, ..., rM−1). With exogenous transition weights, the parameter α is dropped.

4.1. Log-likelihood function

sstvars employs the method of maximum likelihood (ML) for estimating the parameters of
the STVAR models. Indexing the observed data as y−p+1, ..., y0, y1, ..., yT , the conditional
log-likelihood function conditional on the initial values y0 = (y−p+1, ..., y0) is given as

Lt(θ) =
T
∑

t=1

lt(θ) =
T
∑

t=1

log dd(yt; µy,t, Ωy,t, ν). (27)

where dd(yt; µy,t, Ωy,t, ν) is the d-dimensional conditional density of the process, conditional
on Ft−1, at time t, given in Section 2.2. When the conditional distribution is Gaussian,
the degrees of freedom parameter(s) ν is/are dropped from the right side of (27). The ML
estimator of θ maximizes the log-likelihood function Lt(θ) over the parameter space speciĄed
in the below assumption.

We summarize the constraints imposed on the parameter space in the following assumption.

Assumption 2 The true parameter value θ0 is an interior point of Θ, which is a compact
subset of ¶θ = (ϕ1,0, ..., ϕm,0, φ1, ..., φM , σ, α, ν) ∈ R

M(d+d2p+d(d+1)/2) × S × (2, ∞) : Ωm is
positive definite (or Bm is invertible) for all m = 1, ..., M , and Condition 1 holds. ♢.

Above, S = (0, 1)M−1 for relative densities transition weights, S = R× (0, ∞) for logistic and
exponential weights, S = R

(M−1)k for multinomial logistic weights, S = R
M−1 for threshold

weights, and S is an empty set for exogenous weights. As noted before, Condition 1 is
not necessary, but it ensures stationarity and ergodicity of the process, unless the transition
weights are exogenous. In estimation, we impose the more easily veriĄed Condition 2, however,
and the sufficient condition can be check after the estimation with the function bound_JSR. As
noted in Section 2.1.1, the sufficient condition is in practice usually satisĄed if the necessary
condition is satisĄed and not very close to being violated. Given that under Condition 1
the process is ergodic stationary, there is no particular reason to believe that the standard
asymptotic results of consistency and limiting Gaussian distribution would not apply to the
ML estimator.
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4.2. Two-phase estimation procedure

Finding the ML estimate amounts maximizing the log-likelihood function (27) over a high
dimensional parameter space satisfying the constraints summarized in Assumption 2. Due to
the complexity of the log-likelihood function, numerical optimization methods are required.
The maximization problem can be challenging in practice due to the dependence of the
transition weights on the preceding observations, which induces a large number of modes
to the surface of the log-likelihood function, and large areas to the parameter space, where it
is Ćat in multiple directions.

Therefore, we follow Meitz et al. (2023) and Virolainen (2022b) and employ a two-phase
estimation procedure that is run for a large number of times. In the Ąrst phase, a genetic
algorithm is used to Ąnd parameter values (hopefully) near local maximums. Since genetic
algorithms tend to converge slowly near local solutions, a gradient based variable algorithm
(Nash 1990, algorithm 21, implemented by R Core Team 2022) is ran for each of the starting
values, resulting in a number of alternative local solutions. Some of the estimation rounds
may end up in saddle points or near-the-boundary points that are not local solutions, and
some of the local solutions may be inappropriate for econometric inference (for instance, there
might be only a few observations from some of the regimes). After the estimation rounds have
been ran, the researcher can choose the local solution that maximizes the log-likelihood among
the appropriate local solutions. Inappropriate solutions are automatically Ąltered by sstvars,
but this functionality can also be turned off and the researchers can use estimates based any
estimation round. The R package sstvars employs a modiĄed genetic algorithm that works
similarly to the one described in the R packages uGMAR (Virolainen 2018b) and gmvarkit

(Virolainen 2018a) (the genetic algorithm and implemented in former is brieĆy described in
Virolainen 2022b). See Virolainen (2022a, Chapter 3) for a related discussion on complex
numerical estimation problems using the two-phase procedure.

4.3. Examples of unconstrained estimation

In this section, we demonstrate how to estimate STVAR models with sstvars. In the examples,
we only consider p = 1 models for simplicity and merely because then the code outputs Ąt in
the margins better. This order may not be the best in the modeling perspective, however.

In sstvars, the STVAR models are deĄned as class stvar S3 objects, which can be created with
given parameter values using the constructor function STVAR (see Section 7) or by using the
estimation function fitSTVAR, which estimates the parameters and then builds the (reduced
form) model. Structural models are estimated based on a reduced form model with the func-
tion fitSSTVAR. For estimation, fitSTVAR needs to be supplied with a multivariate time series
and the arguments specifying the model. The necessary arguments for specifying the model
include the autoregressive order p, the number of regimes M, the transition weight function
weight_function, with some weight functions the switching variable(s) weightfun_pars,
and the conditional distribution cond_dist.

Additional arguments may be supplied to fitSTVAR in order to specify, most importantly, how
many estimation rounds should be performed (nrounds) and how many central processing
unit (CPU) cores should be used in the estimation (ncores). Some of the estimation rounds
may end up in local-only maximum points or saddle points, but reliability of the estimation
results can be improved by increasing the number of estimation rounds. A large number
of estimation rounds may be required particularly when the number of regimes is large or
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there are many variables in the data, as the surface of the log-likelihood function becomes
increasingly more challenging. It is also possible to adjust the settings of the genetic algorithm
that is used to Ąnd the starting values. The available options are listed in the documentation
of the function GAfit to which the arguments adjusting the settings will be passed.

In general, we recommend being conservative with choice of M due to the iden-

tifation problems induced if the number of regimes is chosen too large. Also,

estimation of models that contain more than two regimes can be extremely chal-

lenging. Another important thing to know about estimation is that the estimation

algorithm performs very poorly if some of the AR coefficients are very large, sub-

stantially larger than one. This means that you need to scale each component

time series so that they vary approximately in the same magnitude. For instance,

typically in macroeconomic time series, log-differences should be multiplied by

hundred. If the suitable scales are not obvious, you can try out different scales

and estimate linear VARs with your favorite package to see whether the AR co-

effients are in a reasonable range. When a suitable scale is found, proceed to the

STVAR models.

We illustrate the use of sstvars with a quarterly series consisting of two U.S. variables: the
percentage change of real GDP and the percentage change of GDP implicit price deĆator,
covering the period from 1959Q1 to 2019Q4. The following code Ąts a STVAR(p = 1, M = 2)
model with StudentŠs t conditional distribution and logistic transition weights by performing
24 estimation rounds with 8 CPU cores. In practice, hundreds or even thousands of

estimation rounds is often required to obtain reliable results. The larger the

dimension of the series is and the larger the order of the model is and the more

there are regimes, the more estimation rounds is required. The model in our

example is easy to estimate, as it is small in dimension and order. We set the
switching variable to be the Ąrst lag of the second variable, i.e., the GDP deĆator by setting
argument weightfun_pars=c(2, 1).

The argument seeds supplies the seeds that initialize the random number generator at the
beginning of each call to the genetic algorithm, thereby yielding reproducible results.

R> library(sstvars)

R> data("gdpdef", package="sstvars")

R> fit12 <- fitSTVAR(gdpdef, p=1, M=2, weight_function="logistic",

+ weightfun_pars=c(2, 1), cond_dist="Student", nrounds=24, ncores=8,

+ seeds=1:24)

Using 8 cores for 24 estimations rounds...

Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=31s

Results from the genetic algorithm:

The lowest loglik: -283.893

The largest loglik: -253.864

Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=03s

Results from the variable metric algorithm:

The lowest loglik: -276.669
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The largest loglik: -250.236

Filtering inappropriate estimates...

Calculating approximate standard errors...

Finished!

The progression of the estimation process is reported with a progress bar giving an estimate of
the remaining estimation time. Also statistics on the spread of the log-likelihoods are printed
after each estimation phase. The progress bars are generated during parallel computing with
the package pbapply (Solymos and Zawadzki 2020).

Because the log-likelihood function is highly multimodal, and the estimation algorithm is ran
a large number of times, it produces a set of local solutions, possibly representing various
modes in the log-likelihood function. Some of the local solutions may be inappropriate for
econometric inference, for instance, because they contain a near-singular error term covari-
ance matrix or regimes that have only a very small number of observations generated (even
partially) from them. Such inappropriate solutions, i.e., estimates that are not solutions of
interest, are Ąltered automatically by sstvars. SpeciĄcally, solutions that incorporate a near-
singular error term covariance matrix (any eigenvalue less than 0.002), any modulus "bold A"
eigenvalues larger than 0.9985 (indicating the necessary condition for stationarity is close to
break), or transition weights such that they are close to zero for almost all t for at least one
regime. With relative densities transition weights, also solutions in which a weight parameter
estimate is close to zero are Ąltered out.

Automatic Ąltering can be turned off with the argument filter_estimates=FALSE. Then, the
various local solutions can be easily examined by hand by using the function alt_stvar and
adjusting its argument which_largest or which_round. Note that alt_stvar can be used
also when the automatic Ąltering is turned on, since the estimates from all of the estimation
rounds are stored in the class ’stvar’ object returned by fitSTVAR.

The estimates can be examined with the print method.

R> print(fit12)

logistic Student STVAR model, reduced form model no AR_constraints,

no mean_constraints,

p = 1, M = 2, d = 2, #parameters = 21, #observations = 243 x 2

Switching variable: GDPDEF with lag 1.

Regime 1

Degrees of freedom: 7.70 (for all regimes)

Regime means: 0.71, 0.49

Y phi0 A1 Omega 1/2

1 y1 = [ 0.63 ] + [ 0.35 -0.35 ] y1.1 + [ 0.37 0.00 ] eps1

2 y2 [ 0.14 ] [ 0.06 0.62 ] y2.1 [ 0.00 0.03 ] eps2

Regime 2

Weight params: 1.22 (location), 5.01 (scale)

Regime means: 0.77, 1.76
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Y phi0 A1 Omega 1/2

1 y1 = [ 2.41 ] + [ 0.13 -0.99 ] y1.1 + [ 1.29 -0.06 ] eps1

2 y2 [ 0.67 ] [ -0.04 0.64 ] y2.1 [ -0.06 0.19 ] eps2

The parameter estimates are reported for each mixture component separately so that the
estimates can be easily interpreted. Each regimeŠs autoregressive formula is presented in the
form

yt = φm,0 + Am,1yt−1 + ... + Am,pyt−p + Ω1/2
m et. (28)

The other statistics are listed above the formula: the degrees of freedom parameter estimate,
the unconditional means of the regimes, and estimates of the transition weight parameters.
For models incorporating mutually independent StudentŠs t shocks (cond_dist="ind_Student"),
estimates of the impact matrices Bm, m = 1, ..., M , are presented in the place of the covari-
ance matrices Ωm. Based on the estimate of the location parameter and the conditional means
in the above printout, the second regime accommodates periods of high inĆation and the Ąrst
regime thereby periods of lower inĆation.

A more detailed printout is obtained with the summary method as follows:

R> summary(fit12)

logistic Student STVAR model, reduced form model, no AR_constraints,

no mean_constraints,

p = 1, M = 2, d = 2, #parameters = 21, #observations = 243 x 2

Switching variable: GDPDEF with lag 1.

loglik/T: -1.03, AIC: 2.23, HQIC: 2.35, BIC: 2.53

Regime 1

Degrees of freedom: 7.70 (for all regimes)

Moduli of 'bold A' eigenvalues: 0.49, 0.49

Cov. matrix 'Omega' eigenvalues: 0.37, 0.03

Regime means: 0.71, 0.49

Regime sdevs: 0.66, 0.24

Y phi0 A1 Omega 1/2

1 y1 = [ 0.63 ] + [ 0.35 -0.35 ] y1.1 + [ 0.37 0.00 ] eps1

2 y2 [ 0.14 ] [ 0.06 0.62 ] y2.1 [ 0.00 0.03 ] eps2

Error term correlation matrix:

[,1] [,2]

[1,] 1.000 0.028

[2,] 0.028 1.000

Regime 2

Moduli of 'bold A' eigenvalues: 0.71, 0.06

Cov. matrix 'Omega' eigenvalues: 1.29, 0.18
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Weight params: 1.22 (location), 5.01 (scale)

Regime means: 0.77, 1.76

Regime sdevs: 1.32, 0.59

Y phi0 A1 Omega 1/2

1 y1 = [ 2.41 ] + [ 0.13 -0.99 ] y1.1 + [ 1.29 -0.06 ] eps1

2 y2 [ 0.67 ] [ -0.04 0.64 ] y2.1 [ -0.06 0.19 ] eps2

Error term correlation matrix:

[,1] [,2]

[1,] 1.00 -0.12

[2,] -0.12 1.00

Print approximate standard errors with the argument 'standard_error_print=TRUE'.

The above summary printout shows additional information compared to the print method,
including moduli of the eigenvalues of the companion form AR matrices (to assess how close
Condition 2 is to break), eigenvalues of the error term covariance matrices (to assess how
close they are to being non-positive deĄnite), marginal standard deviations of the variables
in each regime, error term correlation matrices, and the log-likelihood as well as the values of
the information criteria divided by the number of observations T − p.

Approximate standard errors can be printed by specifying the argument standard_error_print

= TRUE in the print method, which prints the standard errors in the same form as the
print method prints the estimates. There is no standard error for the intercepts if mean
parametrization is used (by setting parametrization = "mean" in fitSTVAR) and vice versa.
In order to obtain standard errors for the regimewise unconditional means or intercepts,
one can easily swap between the mean and intercept parametrizations with the function
swap_parametrization. Note that approximate standard errors are based on the mere as-
sumption of the standard Gaussian asymptotic distribution of the estimator. Hence, they
should be interpreted with caution.

Finally, we show how STVAR models incorporating exogenous transition weights can be
estimated. In the below example, we assume two regimes (M = 2), autoregressive order one
(p = 1), and mutually independent StudentŠs t shocks. As an arbitrary example of exogenous
transition weights, we draw the weights of Regime 1 by random from the uniform distribution,
and construct the transition weights matrix as follows:

R> set.seed(1)

R> tw1 <- runif(nrow(gdpdef) - 1) # Transition weights of Regime 1

R> twmat <- cbind(tw1, 1 - tw1) # Transition weights of both regimes

Each column of the transition weight matrix gives the weights of the corresponding regime,
and each row gives the time t weights. There should be as many rows as there are observations
in the data minus the autoregressive order p, as the Ąrst p observations are the initial values.
Each row should sum to one and all the elements need to be weakly larger than zero.

A two-regime p = 1 STVAR model with the randomly drawn exogenous transition weights
can be estimated by specifying the transition weights in the argument weightfun_pars as
follows:
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R> fitexo12 <- fitSTVAR(gdpdef, p=1, M=2, weight_function="exogenous",

+ weightfun_pars=twmat, cond_dist="ind_Student", nrounds=24, ncores=8,

+ seeds=1:24)

Using 8 cores for 24 estimations rounds...

Optimizing with a genetic algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=42s

Results from the genetic algorithm:

The lowest loglik: -292.906

The largest loglik: -273.537

Optimizing with a variable metric algorithm...

|++++++++++++++++++++++++++++++++++++++++++++++++++| 100% elapsed=06s

Results from the variable metric algorithm:

The lowest loglik: -274.461

The largest loglik: -271.494

Filtering inappropriate estimates...

Calculating approximate standard errors...

Finished!

We examine the estimates with the summary printout:

R> summary(fitexo12)

exogenous ind_Student STVAR model, reduced form model, no AR_constraints,

no mean_constraints,

p = 1, M = 2, d = 2, #parameters = 22, #observations = 243 x 2

loglik/T: -1.12, AIC: 2.42, HQIC: 2.54, BIC: 2.73

Regime 1

Degrees of freedom: 3.73, 3.78 (for all regimes)

Moduli of 'bold A' eigenvalues: 0.90, 0.08

Cov. matrix 'Omega' eigenvalues: 0.51, 0.10

Regime means: 0.68, 0.47

Regime sdevs: 0.72, 0.70

Y phi0 A1 B

1 y1 = [ 0.63 ] + [ 0.08 -0.01 ] y1.1 + [ 0.71 0.11 ] eps1

2 y2 [ 0.03 ] [ 0.02 0.90 ] y2.1 [ 0.03 -0.31 ] eps2

Error term correlation matrix:

[,1] [,2]

[1,] 1.000 -0.065

[2,] -0.065 1.000

Regime 2

Moduli of 'bold A' eigenvalues: 0.87, 0.48
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Cov. matrix 'Omega' eigenvalues: 0.82, 0.06

Regime means: 0.90, 0.91

Regime sdevs: 1.03, 0.54

Y phi0 A1 B

1 y1 = [ 0.65 ] + [ 0.47 -0.19 ] y1.1 + [ 0.78 0.47 ] eps1

2 y2 [ 0.09 ] [ 0.02 0.88 ] y2.1 [ 0.17 -0.20 ] eps2

Error term correlation matrix:

[,1] [,2]

[1,] 1.00 0.16

[2,] 0.16 1.00

Print approximate standard errors with the argument 'standard_error_print=TRUE'.

As the above printout shows, the impact matrices of the regimes, B1, ..., BM are directly
estimated and their estimates presented in the place where the estimates of Ωm are for models
with cond_dist="Gaussian" or cond_dist="ind_Student".

4.4. Further examination of the estimates

In addition to examining the summary printout, it is often useful to visualize the model by
plotting the transition weights together with the time series. That is exactly what the plot
method for STVAR models does. The following command creates the time series plot along
with estimated transition weights:

R> plot(fit12, type="series")

The resulting plot is presented in Figure 1. The Ągure conĄrms our earlier observation: the
second regime is dominant during the periods of high inĆation, particularly in the volatile
periods of 1970Šs and 1980Šs.

It is also sometimes interesting to examine the time series of (one-step) conditional means of
the process along with the time series the model was Ątted to. This can be done conveniently
with the function by setting the argument plot_type="cond_mean" in the plot method. This
plot depicts the contribution of each regime to the conditional mean of the process and how
close the conditional mean is to the observed series in each point of time.

The variable metric algorithm employed in the Ąnal estimation does not necessarily stop at
a local maximum point. The algorithm might also stop at a saddle point or near a local
maximum, when the algorithm is not able to increase the log-likelihood, or at any point,
when the maximum number of iterations has been reached. In the latter case, the estimation
function throws a warning, but saddle points and inaccurate estimates need to be detected
by the researcher.

It is well known that in a local maximum point, the gradient of the log-likelihood function
is zero, and the eigenvalues of the Hessian matrix are all negative. In a local minimum, the
eigenvalues of the Hessian matrix are all positive, whereas in a saddle point, some of them
are positive and some negative. Nearly numerically singular Hessian matrices occur when
the surface of the log-likelihood function is very Ćat about the estimate in some directions.
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Figure 1: The Ągure produced by the command plot(fit12). On the top, a quarterly series
consisting of two U.S. variables: the percentage change of real GDP and the percentage change
of GDP implicit price deĆator, covering the period from 1959Q1 to 2019Q4. On the bottom,
the estimated transition weights of the STVAR model fit12gs Ątted the series.

This particularly happens when the transition weights αm,t are estimated close to zero for all
t = 1, ..., T for some regime m.

sstvars provides several functions for evaluating whether the estimate is a local maximum
point. The function get_foc returns the (numerically approximated) gradient of the log-
likelihood function evaluated at the estimate, and the function get_soc returns eigenvalues of
the (numerically approximated) Hessian matrix of the log-likelihood function evaluated at the
estimate. The numerical derivatives are calculated using a central difference approximation

∂L(θ)

∂θi
≈

f(θ + h(i)) − f(θ − h(i))

2h
, h > 0, (29)

where θi is the ith element of θ and h(i) = (0, ..., 0, h, 0, ..., 0) contains h as its ith element.
By default, the difference h = 6 · 10−6 is used.

For example, the following code calculates the Ąrst order condition for the G-StMVAR model
fit12:

R> get_foc(fit12)

[1] 4.262025e-04 4.048578e-04 1.281037e-04 -5.780028e-04

[5] 3.221411e-04 1.776783e-04 2.645895e-04 -3.844178e-04

[9] -2.174971e-05 1.380419e-04 1.664494e-04 -8.551879e-04

[13] 1.246268e-04 -3.826628e-04 -2.131233e-03 -2.536638e-06



Savi Virolainen 25

[17] 1.432667e-04 1.818326e-04 3.602239e-04 1.000681e-05

[21] -3.700270e-05

and the following code calculates the second order condition:

R> get_soc(fit12)

[1] -1.494320e-01 -2.682544e-01 -1.047386e+00 -6.177532e+00

[5] -9.934297e+00 -1.654975e+01 -5.366908e+01 -7.191557e+01

[9] -1.215715e+02 -1.673756e+02 -1.859815e+02 -2.718937e+02

[13] -3.775367e+02 -3.834231e+02 -6.567316e+02 -9.911009e+02

[17] -1.227186e+03 -1.377650e+03 -8.775102e+03 -9.731932e+03

[21] -3.895717e+04

All eigenvalues of the Hessian matrix are negative, which points to a local maximum, and
the gradient of the log-likelihood function is close to zero. The gradient is not exactly zero,
because it is based on a numerical approximation. It is also possible that the estimate is
inaccurate, because it is based on approximative numerical estimation, and the estimates are
therefore not expected to be exactly accurate. Whether the estimate is a local maximum
point with accuracy that is reasonable enough, can be evaluated by plotting the graphs of the
proĄle log-likelihood functions about the estimate. In sstvars, this can be done conveniently
with the function profile_logliks.

The exemplify, the following command plots the graphs of proĄle log-likelihood functions of
the estimated G-StMVAR model fit12:

R> profile_logliks(fit12, scale=0.02, precision=200)

The resulting plot is presented in Figure 2.

The output shows that the estimateŠs accuracy is reasonable, as changing any individual
parameter value marginally would not increase the log-likelihood much. The argument scale

can be adjusted to shorten or lengthen the interval shown in the horizontal axis. If one zooms
in enough by setting scale to a very small number, it can be seen that the estimate is not
exactly at the local maximum, but it is so close that moving there would not increase the
log-likelihood notably. The argument precision can be adjusted to increase the number of
points the graph is based on. For faster plotting, it can be decreased, and for more precision,
it can be increased. The argument which_pars is used to specify the parameters whose
proĄle log-likelihood functions should be plotted. This argument is particularly useful when
creating as many plots as there are parameters in the model to a single Ągure would cause the
individual plots to be very small. In such a case, proĄle log-likelihood functions for subsets
of the parameters can be plotted separately by specifying this argument accordingly.

We have discussed tools that can be utilized to evaluate whether the found estimate is a local
maximum with a reasonable accuracy. It is, however, more difficult to establish that the
estimate is the global maximum. With sstvars, the best way to increase the reliability that
the found estimate is the global maximum (among the appropriate solutions), is to run more
estimation rounds by adjusting the argument nrounds of the estimation function fitSTVAR.

If the model is very large, a very large number of estimation rounds may be required to
Ąnd the global maximum. If there are two regimes in the model, p is reasonable, and the
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Figure 2: The Ągure produced by the command profile_logliks(fit12, scale=0.02,

precision=200). The graphs of the proĄle log-likelihood functions of the logistic StudentŠs
t STVAR model drawn about the estimate. The red vertical lines denote the estimate.

dimension of the time series at most four, the required number of estimation rounds typically
varies from several hundred to several thousand depending on the model and the data. In the
simpler models, less estimation rounds are required. In the larger models, and in particular
if M > 2 or d > 4, a signiĄcantly large number of estimation rounds may be required obtain
the MLE. Another thing that makes the estimation more challenging, are exotic parameter
constraints that do not reduce the dimension of the parameter much. Constraints that greatly
reduce complexity of the parameter space (such as constraining the autoregressive matrices
to be identical in all regimes3), on the other hand, make the estimation easier, and reliable
estimation of such models thereby require less estimation rounds. Constrained estimation is
discussed in Section 4.6.

4.5. Estimation of structural STVAR models

As explained, sstvars currently supports three types of structural models: structural models
identiĄed recursively by the lower triangular Cholesky decomposition, structural models iden-
tiĄed by conditional heteroskedasticity, and structural models identiĄed by non-Gaussianity.
In either case, the structural models are estimated with the function fitSSTVAR based on pre-
liminary estimates from a reduced form model. If the structural model is not overidentifying,
which is always the case for recursively identiĄed models, model identiĄed by non-Gaussianity,
as well as for models identiĄed by heteroskedasticity when there are two regimes and further
constraints are not imposed on the impact matrix, there is no need for estimation but at most

3Models constrained in this way can often be reliably estimated with a reasonable number of estimation
rounds even when M > 2
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for a reparametrization of the model. In any case, the fitSSTVAR constructs the structural
model appropriately.

To exemplify, we Ąrst create a recursively identiĄed structural model based on the reduced
form model fit12 by setting the argument identification="recursive". Then, we will
study an example of a structural model identiĄed by heteroskedasticity. The following code
builds the recursively identiĄed model:

R> fit12rec <- fitSSTVAR(fit12, identification="recursive")

Since the parametrization did not change nor was any estimation required, fit12rec is essen-
tially the reduced form model fit12 with has the property that can be used as a structural
model in structural analysis such as for estimating the generalized impulse response functions.

The following code creates a structural model identiĄed by heteroskedasticity based on the
reduced form model fit12 and then prints it:

R> fit12het <- fitSSTVAR(fit12, identification="heteroskedasticity")

R> print(fit12het)

logistic Student STVAR model, identified by heteroskedasticity, no AR_constraints,

no mean_constraints, no B_constraints,

p = 1, M = 2, d = 2, #parameters = 21, #observations = 243 x 2

Switching variable: GDPDEF with lag 1.

Regime 1

Degrees of freedom: 7.70 (for all regimes)

Regime means: 0.71, 0.49

Y phi0 A1 Omega 1/2

1 y1 = [ 0.63 ] + [ 0.35 -0.35 ] y1.1 + [ 0.37 0.00 ] eps1

2 y2 [ 0.14 ] [ 0.06 0.62 ] y2.1 [ 0.00 0.03 ] eps2

Regime 2

Weight params: 1.22 (location), 5.01 (scale)

Regime means: 0.77, 1.76

Y phi0 A1 Omega 1/2

1 y1 = [ 2.41 ] + [ 0.13 -0.99 ] y1.1 + [ 1.29 -0.06 ] eps1

2 y2 [ 0.67 ] [ -0.04 0.64 ] y2.1 [ -0.06 0.19 ] eps2

Structural parameters:

W lamb2

1 [ 0.17 0.59 ] [ 5.67 ]

2 [ -0.18 0.06 ] , [ 3.29 ]

The impact matrix is subject to 0 zero constraints and 0 sign constraints.

Since the structural model identiĄed by heteroskedasticity is not overidentiĄed, no estimation
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was performed but merely a reparametrization. The estimates for the structural parameters
W and λ2, ..., λM are presented at the bottom of the printout.

If the structural model is identiĄed by heteroskedasticity or non-Gaussianity, additional re-
strictions can be imposed on the impact matrix by setting them in the argument B_constraints.
A structural model identiĄed by heteroskedasticity is overidentifying also when there are more
than two regimes in the model, as then the matrix decomposition employed in the identiĄca-
tion does not always exist. In either case, the structural model needs be estimated, which is
performed in sstvars based on preliminary estimates obtained either from a reduced form
model or from a structural model. The estimation is performed with the function fitSSTVAR,
which implements a two-phase estimation procedure in which a robust estimation method
is used in the Ąrst phase and a variable algorithm in the second phase. The default option
for the robust method is Nelder-Mead algorithm implemented by R Core Team (2022) in the
function optim of the package stats.

It is important to note that if the initial estimates are far from the ML estimate of the
overidentiĄed model, the resulting solution is likely local only due to the high multimodality
of the log-likelihood function. However, it is not often very appealing to impose overidentiĄed
constraints that far from the unrestricted estimates in the Ąrst place. But in any case, since
the estimation may be unrealiable if the restricted ML estimate is far from the unrestricted ML
estimate, we recommend using our package to estimate only such overidentifying structural
models in which the unrestricted estimate is close to satisfying the imposed constraints.

The exemplify, we estimate a structural model identiĄed by heteroskedasticity based on the
structural model fit12het by setting the argument identification="heteroskedasticity"

and imposing the constraint that the second element of the second column of the impact ma-
trix is zero (the above estimates of W show that the corresponding unrestricted estimate is
close to zero). The zero constraint is imposed by setting the argument B_constraints as
matrix such that the second element of the second column is zero and all other elements are
NA. Sign constraints can be set similarly by setting the corresponding elements to 1 or -1 (or
any other strictly positive of negative value). The following code estimates the model:

R> fit12hetb <- fitSSTVAR(fit12, identification="heteroskedasticity",

+ B_constraints=matrix(c(NA, NA, NA, 0), nrow=2))

R> print(fit12het)

The log-likelihood of the supplied model: -250.236

Constrained log-likelihood prior estimation: -260.164

The log-likelihood after robust estimation: -250.556

The log-likelihood after final estimation: -250.486

The log-likelihoods of the original model, the initial estimates of the constrained model,
the estimates after the robust estimation, and the Ąnal estimates are printed. If the log-
likelihood of after Ąnal estimation is bad compared to the log-likelihood of the original model,
the estimation is likely unreliable. The command print(fit12hetb) prints the estimated
overidentiĄed model (we ommit the printout for brevity).

After creating a structural model identiĄed by heteroskedasticity, the columns of W can be
reordered with the function reorder_B_columns which also reorders all λmi accordingly (and
hence the resulting model will coincide with the original reduced form model). Also, all signs
of any column of W can be swapped with the function swap_B_signs.
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4.6. Constrained estimation

sstvars supports constrained ML estimation of the STVAR models, including several types
of constraints. Linear constraints can be imposed on the autoregressive matrices (argu-
ment AR_constraints), unconditional means of the regimes can be constrained equal across
(groups of) regimes (argument mean_constraints), and weight function parameters can
be constrained to a Ąxed value or linear constraints can be impose on them (argument
weight_constraints). Following sections give examples of constrained estimation impos-
ing some of these constraints.

Linear constraints on the autoregressive parameters

Imposing linear constraints on the autoregressive parameters of a STVAR model is straight-
forward in sstvars. The constraints are expressed in a somewhat general form which allows to
impose a wide class of constraints but one needs to take the time to construct the constraint
matrix carefully for each particular case.

We consider constraints of form

(φ1, ...,φM ) = Cψ, (30)

φm = (vec(Am,1), ..., vec(Am,p)) (pd2x1), m = 1, ..., M, (31)

where C is known (Mpd2xq) constraint matrix (of full column rank) and ψ is unknown (qx1)
parameter vector.

To give couple examples, consider the following two common uses of linear constraints: re-
stricting the autoregressive matrices to be the equal across all regimes and constraining some
of the AR parameters to zero.

Restricting AR matrices to be the equal across the regimes

To restrict the AR matrices to be equal across the regimes, we want φm to be the same for all
m = 1, ..., M . The parameter vector ψ (qx1) then corresponds to any φm = φ, and therefore
q = pd2. For the constraint matrix we choose

C = [Ipd2 : · · · : Ipd2 ]′ (Mpd2xpd2), (32)

that is, M pieces of (pd2xpd2) diagonal matrices stacked on top of each other, because then

Cψ = (ψ, ...,ψ) = (φ, ...,φ). (33)

For instance, if there are two regimes in the model, the appropriate constraint matrix then
created as

R> p <- 1 # The autoregressive order of the model

R> d <- 2 # Whatever the dimension of the time series is

R> I_pd2 <- diag(p*d^2) # The appropriate diagonal matrix

R> (C1 <- rbind(I_pd2, I_pd2)) # Stack them on top of each other

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 1 0 0
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[3,] 0 0 1 0

[4,] 0 0 0 1

[5,] 1 0 0 0

[6,] 0 1 0 0

[7,] 0 0 1 0

[8,] 0 0 0 1

The command

R> fit12c1 <- fitSTVAR(gdpdef, p=1, M=2, weight_function="logistic",

+ weightfun_pars=c(2, 1), cond_dist="Student", AR_constraints=C1)

would then estimate a logistic StudentŠs t STVAR(1, 2) model with Ąrst lag of the second
variable as the switching variable such that the AR matrices constrained to be the equal
in both regimes. We omit the output for brevity. In practice, you might want to adjust
the number of CPU cores used (ncores), the of estimation rounds (nrounds), and set seeds
(seeds).

Restricting AR parameters to be the same for all regimes and constraining non-

diagonal elements of coefficient matrices to be zero

The previous example shows how to restrict the AR parameters to be the same for all
regimes, but say we also want to constrain the non-diagonal elements of coefficient ma-
trices Am,i (m = 1, ..., M, i = 1, ..., p) to be zero. We have the constrained parameter ψ
(qx1) representing the unconstrained parameters (φ1, ...,φM ), where the restrictions imply
φm = φ = (vec(A1), ..., vec(Ap)) (pd2x1) and the elements of vec(Ai) (i = 1, ..., p) corre-
sponding to the diagonal are zero.

For illustrative purposes, letŠs consider a STVAR model with autoregressive degree p = 2,
number of regimes M = 2, and number of time series in the system d = 2. Then we have

φ = (A1(1, 1), 0, 0, A1(2, 2), A2(1, 1), 0, 0, A2(2, 2)) (8x1) and (34)

ψ = (A1(1, 1), A1(2, 2), A2(1, 1), A2(2, 2)) (4x1), (35)

where Al(i, j) is the ijth elements of Al. By a direct calculation, we can see that choosing
the constraint matrix

C =



c̃

c̃

]

(Mpd2x4), (36)

where

c̃ =





























1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1





























(pd2x4) (37)

satisĄes Cψ = (φ, ...,φ).

The above constraint matrix can be created as



Savi Virolainen 31

R> c_tilde <- matrix(0, nrow=2*2^2, ncol=4)

R> c_tilde[c(1, 12, 21, 32)] <- 1

R> C2 <- rbind(c_tilde, c_tilde)

R> C2

[,1] [,2] [,3] [,4]

[1,] 1 0 0 0

[2,] 0 0 0 0

[3,] 0 0 0 0

[4,] 0 1 0 0

[5,] 0 0 1 0

[6,] 0 0 0 0

[7,] 0 0 0 0

[8,] 0 0 0 1

[9,] 1 0 0 0

[10,] 0 0 0 0

[11,] 0 0 0 0

[12,] 0 1 0 0

[13,] 0 0 1 0

[14,] 0 0 0 0

[15,] 0 0 0 0

[16,] 0 0 0 1

The command

R> fit12c2 <- fitSTVAR(gdpdef, p=2, M=2, weight_function="logistic",

+ weightfun_pars=c(2, 1), cond_dist="Student", AR_constraints=C2)

would then estimate a logistic StudentŠs t STVAR(1, 2) model with Ąrst lag of the second
variable as the switching variable such that the AR matrices are constrained to be the equal
in both regimes and the off-diagonal elements are restricted to zero. Again, we omit the
output for brevity (and you may want to adjust the arguments nrounds, ncores, and seeds

when estimating the model in practice).

Constraining the unconditional means of some regimes to be equal

In addition to constraining the autoregressive parameters, sstvars allows to constrain the
unconditional means of some regimes to be the equal. This feature is, however, only avail-
able for models that are parametrized with the unconditional means instead of intercepts
(because some of the estimation is always done with mean-parametrization and one cannot
generally swap the parametrization when constraints are imposed on means/intercepts). With
the mean-parametrization employed (by setting parametrization="mean"), one may deĄne
groups of regimes that have the same mean parameters using the argument mean_constraints.
For instance, with three regime model (M = 3) the argument mean_constraints=list(c(1,

3), 2) sets the unconditional means of the Ąrst and third regimes to be the same while allows
the second regime to have different mean.

One can also combine linear constraints on the AR parameters with constraining some of
the means to be the same. This allows, for instance, to estimate a model in which only the
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covariance matrix varies in time. To exemplify, the following code estimates a StudentŠs t

logistic STVAR(p = 1, M = 2) model such that the unconditional means and autoregression
matrices are constrained be the same in both regimes. The resulting model thereby has
time-varying covariance matrix but otherwise it is linear.

R> fit12c3 <- fitSTVAR(gdpdef, p=1, M=2, weight_function="logistic",

+ weightfun_pars=c(2, 1), cond_dist="Student", AR_constraints=C1,

+ mean_constraints=list(1:2), parametrization="mean")

The output is omitted for brevity.

Constraining weight functions parameters

It is also possible to constrain the weight functions parameters α (e.g., the location and scale
parameters for logistic models). sstvars accommodates two types of alternative constraints
on the weight function parameters: linear constraints and Ąxed values. Note that weights
constraints are not available for models with exogenous weights, as they do not contain any
weight function parameters.

Linear constraints

Linear constraints on the weight function parameters are of the form

α = Rξ + r, (38)

where α (a×1) contains the weight funtion parameters, R is a known (a× l) constraint matrix
of full column rank, r is a known (a × 1) constant, and ξ is an unknown (l × 1) parameter.
The constraint matrix R and the constant r are set in the argument weight_constraints

as a list of two elements, R in the Ąrst element and r in the second element. The number of
unknown parameters l is the number of columns of R. For instance, the following argument
imposes constraints for the scale and location parameters of a logistic STVAR model (in which
α = (c, γ)) such that the location parameter is the scale parameter divided by two plus 0.3:
weight_constraints=list(R=matrix(c(0.5, 1), nrow=2), r=c(0.3, 0)).

Fixed values

Imposing the weight function parameters to be known Ąxed values is very straightforward. In
this case, the argument weight_constraints should still be a list including the elements R

and r, but the former is set to zero, R = 0, and the latter is set to the desired Ąxed values. For
instance the following argument imposes constraints for the location and location parameters
of a logistic STVAR model (in which α = (c, γ)) such that the location parameter is 0.3 and
the scale parameter is 0.5: weight_constraints=list(R=0, r=c(0.3, 0.5).

4.7. Testing parameter constraints

One way to asses the validity of the imposed constraints is to compare the values of infor-
mation criteria of the constrained and unconstrained models. sstvars, however, also provides
functions for testing the constraints with the likelihood ratio test, Wald test, and RaoŠs test,
whose applicability requires that the ML estimator of the STVAR model has the conventional
asymptotic distribution. As noted before, this is a mere assumption, but given the process
is ergodic stationary, there is no particular reason to believe that the standard asymptotic
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results would not hold. For a discussion on the tests, see Buse (1982) and the references
therein, for example.

The likelihood ratio test considers the null hypothesis that the true parameter value θ0

satisĄes some constraints imposed on these parameters (such that the constrained parameter
space is a subset of the parameter space, which is presented in Assumption 2). Denoting by
L̂U and L̂C the (maximized) log-likelihoods based on the unconstrained and constrained ML
estimates, respectively, the test statistic takes the form

LR = 2(L̂U − L̂C). (39)

Under the null, the test statistic is asymptotically χ2-distributed with the degrees of freedom
given by the difference in the dimensions of the unconstrained and constrained parameter
spaces. With sstvars, the likelihood ratio test can be calculated with the function LR_test,
which takes the unconstrained model (a class ’stvar’ object) as its Ąrst argument and the
constrained model as the second argument.

sstvars implements the Wald test of the null hypothesis

Aθ0 = c, (40)

where A is a (k × d) matrix with full row rank, c is a (k × 1) vector, θ0 is the true parameter
value, d is the dimension of the parameter space, and k is the number of constraints. The
Wald test statistic takes the form

W = (Aθ̂ − c)′[AJ (θ̂)−1A′]−1(Aθ̂ − c), (41)

where J (θ̂) is the observed information matrix evaluated at the ML estimate θ̂. Under the
null, the test statistic is asymptotically χ2-distributed with k degrees of freedom (which is
the difference in dimensions of the constrained and unconstrained parameter spaces). With
sstvars, the Wald test can be calculated with function Wald_test, which takes the estimated
unconstrained model (as a class ’stvar’ object) as the Ąrst argument, the matrix A as the
second argument, and the vector c as the third argument.

Finally, RaoŠs test is implemented to the function Rao_test. See the function documentation
on how to use it.

5. Residual based model diagnostics

sstvars employs residual based diagnostics for assessing the adequacy of the Ątted model. Con-
ventional graphical diagnostics can be examined with function diagnostic_plot, which plots
the residual time series, auto- and crosscorrelation functions of the residuals, auto- and cross-
correlation functions of the squared residuals, and normal quantile-quantile plots as well as
histograms of the residuals. The plots can be created for both unstandardized residuals or for
standardized residuals by adjusting the argument standardize to FALSE or TRUE according.
Using unstandardized residuals is advisable when checking for remaining autocorrelation. But
standardized residuals should be used to check for remaining conditional heteroskedasticity
and to check the modelŠs adequacy to capture the marginal distribution of the series, because
the STVAR models are conditionally heteroskedastic and the unstandardized residuals do not
take into account the time-varying conditional covariance matrix.
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Remaining autocorrelation in the residuals can also be tested with the (adjusted) Portmanteau
test, which is implemented to the function Portmantau_test. The test can also be applied to
standardized squared residuals to test for remaining conditional heteroskedasticity by setting
the argument which_test="het.sked". The number of lags that should be taken into account
in the test is set with the argument nlags.

6. Impulse response analysis

6.1. Generalized impulse response function

The expected effects of the structural shocks in the structural STVAR models generally
depend on the initial values as well as on the sign and size of the shock, which makes the
conventional way of calculating impulse responses unsuitable (see, e.g., Kilian and Lütkepohl
2017, Chapter 4). Therefore, we consider the generalized impulse response function (GIRF)
(Koop et al. 1996) deĄned as

GIRF(n, δj , Ft−1) = E[yt+n♣δj , Ft−1] − E[yt+n♣Ft−1], (42)

where n is the chosen horizon, Ft−1 = σ¶yt−j , j > 0♢ as before, the Ąrst term on the right
side is the expected realization of the process at time t+n conditionally on a structural shock
of sign and size δj ∈ R in the jth element of et at time t and the previous observations, and
the second term on the right side is the expected realization of the process conditionally on
the previous observations only. GIRF thus expresses the expected difference in the future
outcomes when the speciĄc structural shock hits the system at time t as opposed to all shocks
being random.

Due to the p-step Markov property of the implemented STVAR models, conditioning on (the
σ-algebra generated by) the p previous observations yt−1 ≡ (yt−1, ..., yt−p) is effectively the
same as conditioning on Ft−1 at the time t and later. The initial values (or history) yt−1

can be either Ąxed or random, but with random history the GIRF becomes a random vector,
however. Using Ąxed yt−1 makes sense when one is interested in the effects of the shock in
a particular point of time. Alternatively, one can estimate GIRFs conditional on the initial
values being from a speciĄc regime, in which case yt−1 should generated from the regime of
interest.

In practice, the GIRF and its distributional properties can be approximated with a Monte
Carlo algorithm that generates independent realizations of the process and then takes the
sample mean for point estimate. If yt−1 is random and follows the distribution G, the GIRF
should be estimated for different values of yt−1 generated from G, and then the sample mean
and sample quantiles can be taken to obtain the point estimate and conĄdence intervals. The
algorithm implemented in sstvars is presented in Lanne and Virolainen (2024).

Because the STVAR models allow to associate speciĄc features or economic interpretations
for different regimes, and because shifts in the regime are the source of asymmetries in
the impulse responses, it might be interesting to also examine the effects of a structural
shock to the transition weights αm,t, m = 1, ..., M . We then consider the related GIRFs
E[αm,t+n♣δj ,yt−1] − E[αm,t+n♣yt−1] for which point estimates and conĄdence intervals can be
constructed similarly to (42).
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In sstvars, the GIRF can be estimated with the function GIRF which should be supplied
with the estimated STVAR model or a STVAR model built with hand-speciĄed parameter
values using the function STVAR. Structural models can be created based on a reduced form
model with the function fitSSTVAR. The sign and size of the structural shock can be set with
the argument shock_size. If not speciĄed, a positive shock with the size of one standard
deviation is used; that is, the size is one. Among other arguments, the function may also be
supplied with the argument init_regime which speciĄes from which regime the initial values
are generated from. Alternatively, one may specify Ąxed initial values with the argument
init_values. Note that the conĄdence intervals (whose conĄdence level can be speciĄed
with the argument ci) reĆect uncertainty about the initial value only and not about the
parameter estimates.

Due to the nonlinear nature of the model, GIRFs estimated from different starting values,
or with different sign or magnitude of the shock, generally move the variables differently.
Sometimes it is, however, of interest to scale the impulse responses so that they correspond
to instantaneous movement of some speciĄc sign and size of some speciĄc variable. In sstvars,
this is most conveniently achieved with the arguments scale. The argument scale can be
speciĄed in order to scale the GIRFs to some of the shocks so that they correspond to a
speciĄc sign and size of instantaneous response of some speciĄc variable. Alternatively, the
GIRFs can be scaled to correspond to a speciĄc peak response of some variable by setting
scale_type="peak". For a single shock, the argument scale should a length three vector
where the shock of interest is given in the Ąrst element (an integer in 1, ..., d), the variable
according to which the GIRFs should be scaled in the second element (an integer in 1, ..., d),
and the sign and size of the given variableŠs instantaneous response in the third element (a
non-zero real number). If the GIRFs of multiple shocks should be scaled, provide a matrix
which has one column for each of the shocks with the columns being the length three vectors
described above. Note that if you scale the GIRFs, the scaled GIRFs of transition weights
can be outside the interval from zero to one.

Because estimating the GIRF and their conĄdence intervals is computationally demanding,
parallel computing is taken use of to shorten the estimation time. The number of CPU cores
used can be set with the argument ncores. The objects returned by the GIRF function have
their own plot and print methods. Also, cumulative impulse responses of the speciĄed
variables can be obtained directly by specifying the argument which_cumulative.

6.2. Generalized forecast error variance decomposition

Similarly to the conventional impulse response functions are unsuitable for impulse response
analysis (due to their inability to capture asymmetries the effects of the shocks), the con-
ventional forecast error variance decomposition is unsuitable for tracking the contribution of
each shock to the variance of the forecast errors. We consider the generalized forecast error
variance decomposition (GFEVD) (Lanne and Nyberg 2016) that is deĄned for variable i,
shock j, and horizon h as

GFEVD(j, yit, δj , Ft−1) =

∑h
l=0 GIRF(l, δj , Ft−1)2

i
∑d

k=1

∑h
l=0 GIRF(l, δk, Ft−1)2

i

, (43)

where h is the chosen horizon and GIRF(l, δj , Ft−1)i is the ith element of the related GIRF
(see also the notation described for GIRF in the previous section). That is, the GFEVD is



36 Structural Smooth Transition Vector Autoregressive Models R

otherwise similar to the conventional forecast error variance decomposition but with GIRFs
in the place of conventional impulse response functions. Because the GFEVDs sum to unity
(for each variable), they can be interpreted in a similar manner to the conventional FEVD.

In sstvars, the GFEVD can be estimated with the function GFEVD. As with the GIRF, the
GFEVD is dependent on the initial values. The type of the initial values is set with the
argument initval_type, and there are three options:

1. "data" which estimates the GIRFs for all possible length p histories in the data and
then the GIRFs in the GFEVD are obtained as the sample mean over those GIRFs.

2. "random" which generates the initial values from one of the speciĄc regimes, speciĄed
by the argument init_regimes. The GIRFs in the GFEVD are obtained as the sample
mean over the GIRFs estimated for the different random initial values.

3. "fixed" which estimates the GIRFs for a single Ąxed initial value that is set with the
argument init_values.

The shock size is the same for all scalar components of the structural shock and it can be ad-
justed with the argument shock_size. If the GIRFs for some variables should be cumulative
before calculating the GFEVD, specify them with the argument which_cumulative. Finally,
note that the GFEVD objects have their own plot and print methods.

sstvars also implements a special feature in which for every possible length p history in the
data, the GFEVD is estimated for a shock that has the sign and size of the corresponding
structural shock recovered from the Ątted model. This can be done by setting the argument
use_data_shocks=TRUE. The GFEVD is then calculated as the average of the GFEVDs ob-
tained from the GIRFs estimated for the data shocks. The plot and print methods can be used
as usual for this GFEVD. However, this feature also estimates the contribution of each shock to
the variance of the forecast errors at various horizons in speciĄc historical points of time. This
can be done by using the plot method with the argument data_shock_pars. Note that the
arguments shock_size, initval_type, and init_regime are ignored if use_data_shocks

== TRUE.

6.3. Linear impulse response functions

It is also possible to calculate linear impulse response functions (IRF) based on a speciĄc
regime of the estimated model by using the function linear_IRF. If the autoregressive dy-
namics of the model are linear (i.e., either M = 1 or mean and AR parameters are constrained
identical across the regimes), conĄdence bounds can be estimated based on a type of a Ąxed-
design wild residual bootstrap method. sstvars implements the method proposed Herwartz
and Lütkepohl (2014).

7. Building a STVAR model with speciĄc parameter values

The function STVAR facilitates building STVAR models without estimation, for instance,
in order to simulate observations from a STVAR process with speciĄc parameter values.
The function should be supplied at least with the arguments p, M, and d specifying the
autoregressive order, the number of regimes, and the dimension of the time series, respectively.
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The argument params should be used to specify the parameter values, whereas the weight
function and weight function parameters are speciĄed in the arguments weight_function and
weightfun_pars, respectively, and the conditional distribution in the function cond_dist.

To exemplify, we build a reduced form Gaussian STVAR p = 1, M = 1, d = 2 model with
relative stationary densities as the transition weights. The model has intercept parametriza-
tion and parameter values φ1,0 = (0, 1), φ12,0 = (0, 2), vec(A1,1) = (0.2, 0.2, 0.2, −0.2),
vec(A1,1) = (0.3, 0.3, 0.3, −0.3), vech(Ω1) = (1, 0.1, 1), vech(Ω2) = (4, 0.4, 4), and α1=0.6.
After building the model, we use the print method to examine it:

R> params122 <- c(0, 1, 0, 2, 0.2, 0.2, 0.2, -0.2, 0.3, 0.3, 0.3, -0.3, 1,

+ 0.1, 1, 4, 0.4, 4, 0.6)

R> mod122 <- STVAR(p=1, M=2, d=2, params=params122,

+ weight_function="relative_dens")

R> mod122

relative_dens Gaussian STVAR model, reduced form model, no AR_constraints,

no mean_constraints,

p = 1, M = 2, d = 2, #parameters = 19,

Regime 1

Weight param: 0.60

Regime means: 0.22, 0.87

Y phi0 A1 Omega 1/2

1 y1 = [ 0.00 ] + [ 0.20 0.20 ] y1.1 + [ 1.00 0.10 ] eps1

2 y2 [ 1.00 ] [ 0.20 -0.20 ] y2.1 [ 0.10 1.00 ] eps2

Regime 2

Weight param: 0.40

Regime means: 0.73, 1.71

Y phi0 A1 Omega 1/2

1 y1 = [ 0.00 ] + [ 0.30 0.30 ] y1.1 + [ 4.00 0.40 ] eps1

2 y2 [ 2.00 ] [ 0.30 -0.30 ] y2.1 [ 0.40 4.00 ] eps2

It is possible to include data in the models built with STVAR by either providing the data in
the argument data. When the model is supplied with data, the transition weights and other
data dependent statistics are calculated for the model as well.

8. Simulation and forecasting

8.1. Simulation

sstvars implements the S3 method simulate for simulating observations from STVAR pro-
cesses (see ?simulate.stvar). The method requires the process to be given as a class stvar

object, which are typically created either by estimating a model with the function fitSTVAR
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(or fitSSTVAR) or by specifying the parameter values by hand and building the model with
the constructor function STVAR. The initial values required to simulate the Ąrst p observations
can be either set by hand (with the argument init_values) or drawn from (the stationary
distribution of) some regime (with the argument init_regime). The argument nsim sets the
length of the sample path to be simulated.

To give an example, the following code sets the random number generator seed to one and
simulates 500 observations long sample from the STVAR model built in Section 7, drawing
initial values from the Ąrst regime:

R> mysim <- simulate(mod122, nsim=500, init_regime=1, seed=1)

Our implementation of simulate returns a list containing the simulated sample path in
$sample, the mixture component that generated each observation in $component, and the
transition weights in $transition_weights.

8.2. Simulation based forecasting

Deriving multiple-steps-ahead point predictions and prediction intervals analytically for the
STVAR models is complicated, so sstvars employs the following simulation-based method.
By using the last p observations of the data up to the date of forecasting as initial values,
a large number of sample paths for the future values of the process are simulated. Then,
sample quantiles from the simulated sample paths are calculated to obtain prediction intervals,
and the median or mean is used for point predictions. A similar procedure is also applied
to forecast future values of the transition weights, which might be of interest because the
researcher can often associate statistical characteristics or economic interpretations to the
regimes.

Forecasting is most conveniently done with the predict method (see ?predict.stvar). The
available arguments include the number of steps ahead to be predicted (nsteps), the number
sample paths the forecast is based on (nsim), possibly multiple conĄdence levels for prediction
intervals (pi), prediction type (pred_type), and prediction interval type (pi_type). The
prediction type can be either median, mean for the point forecast.

To exemplify, the following code forecasts the two-dimensional time-series of U.S. GDP and
GDP deĆator growth using the logistic StudentŠs t STVAR(1, 2) model fit12 estimated in
Section 4.3. The forecast is 10 steps (quarters in this case) ahead, based on 10000 Monte Carlo
repetitions with the point forecast based on the mean of those repetitions. The prediction
intervals are two-sided with conĄdence levels 0.95 and 0.90.

R> mypred <- predict(fit12, nsteps=10, nsim=10000, pred_type="mean",

+ pi=c(0.95, 0.90))

The results can be printed with the print method using the command print(mypred) or
plotted with the plot method using the command plot(mypred).

9. Summary

Smooth transition vector autoregressive models are a valuable tool in modelling multivariate
time series in which the data generating dynamics vary in time, exhibiting gradual shifts in
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Related to Name Description
Estimation fitSTVAR Estimate STVAR models.

fitSSTVAR Estimate or construct structural STVAR
models.

alt_stvar Construct a STVAR model based on any
estimation round.

iterate_more Run more iterations of the variable met-
ric algorithm for a preliminary estimated
STVAR model.

Estimates print (method) Print the estimates or their approximate
standard errors.

summary (method) Detailed printout of the model.
plot (method) Plot the series with the Ątted transition

weights of the model.
get_foc Calculate numerically approximated gra-

dient of the log-likelihood function evalu-
ated at the estimate.

get_soc Calculate eigenvalues of numerically ap-
proximated Hessian of the log-likelihood
function evaluated at the estimate.

profile_logliks Plot the graphs of the proĄle log-
likelihood functions about the estimate.

Diagnostics Portmanteau_test Calculate the (adjusted) Portmanteau
test.

diagnostic_plot Plot residual diagnostics (raw or standard-
ized residuals).

Forecasting predict (method) Forecast future observations and transi-
tion weights of the process.

Simulation simulate (method) Simulate from a STVAR process.
Create model STVAR Construct a STVAR model based on given

parameter values.
Hypothesis testing LR_test Calculate likelihood ratio test.

Wald_test Calculate Wald test.
Rao_test Calculate RaoŠs test.

Impulse responses GIRF Estimate generalized impulse response
functions.

GFEVD Estimate generalized forecast error vari-
ance decomposition.

linear_IRF Estimate linear impulse response func-
tions.

Other bound_JSR Calculate bounds for the joint spectral ra-
dius of the companion form AR matrices
of the regimes.

swap_parametrization Swap between mean and intercept
parametrizations

swap_B_signs Swap the signs of the columns of the im-
pact matrix of models identiĄed by het-
eroskedasticity.

reorder_B_columns Reorder the columns of the impact matrix
of models identiĄed by heteroskedasticity.

Table 1: Some useful functions in sstvars sorted according to their usage. The note "method"
in parentheses after the name of a function signiĄes that it is an S3 method for a class stvar

object (often generated by the function fitSTVAR, fitSSTVAR or STVAR).
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the autoregressive coefficients or conditional covariance matrices. We described the R package
sstvars, which accommodates STVAR models with various transition weight functions, includ-
ing exogenous weights, logistic weights (Anderson and Vahid 1998), multinomial logit weights,
exponential weights (e.g., Hubrich and Teräsvirta 2013), threshold weights (Tsay 1998), and
transition weights that deĄned as weighted relative likelihoods of the regimes corresponding
to the preceding p observations (Lanne and Virolainen 2024). Currently, the accommodated
conditional distributions include Gaussian distribution, StudentŠs t distribution, and Stu-
dentŠs t distribution with mutually independent components, whereas the accommodated
identiĄcation methods include recursive identiĄcation, identiĄcation by heteroskedasticity,
and identiĄcation by non-Gaussianity. We discussed the various model speciĄcations and
several features implemented in sstvars for STVAR modeling: unconstrained and constrained
maximum likelihood estimation of the model parameters, impulse response analysis, residual
based diagnostics, hypothesis testing, simulation, forecasting, and more. For convenience, we
have collected some useful functions in sstvars to Table 1. For all the exported functions and
their usage, see the reference manual.

Computational details

The results in this paper were obtained using R 4.3.1 and sstvars 1.0.0 package running on
MacBook Pro 14", 2021, with Apple M1 Pro processor, 16 Gt of uniĄed RAM, and macOS
Sonoma 14.2.1 operating system.

Some of the estimation results (and thereby everything that is calculated based on the esti-
mates) may vary slightly when running the code on different computers. This is likely due to
the numerical error caused by the limited precision of the Ćoat point representation.
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